structure NormalizeEin = struct local structure E = Ein structure P=Printer(* structure O =OrderEin*) in (*Flattens Add constructor: change, expression *) fun mkAdd [e]=(1,e) | mkAdd(e)=let fun flatten((i, (E.Add l)::l'))= flatten(1,l@l') |flatten(i,((E.Const c):: l'))= if (c>0 orelse c<0) then let val(b,a)=flatten(i,l') in (b,[E.Const c]@a) end else flatten(1,l') | flatten(i,[])=(i,[]) | flatten (i,e::l') = let val(b,a)=flatten(i,l') in (b,[e]@a) end val (b,a)=flatten(0,e) in case a of [] => (1,E.Const(1)) | [e] => (1,e) | es => (b,E.Add es) (* end case *) end fun mkProd [e]=(1,e) | mkProd(e)=let fun flatten(i,((E.Prod l)::l'))= flatten(1,l@l') |flatten(i,((E.Const c)::l'))= if(c>0 orelse 0>c) then (3,[E.Const 0]) else flatten(i,l') | flatten(i,[])=(i,[]) | flatten (i,e::l') = let val(a,b)=flatten(i,l') in (a,[e]@b) end val (change,a)=flatten(0,e) in if(change=3) then (1,E.Const(0)) else case a of [] => (1,E.Const(0)) | [e] => (1,e) | es => (change, E.Prod es) (* end case *) end (* filter function shifts constant/greeks to outside product*) fun filter2([],pre,eps,dels,post)=(pre,eps,dels,post) | filter2(E.Const c::es,pre, eps,dels,post)=filter2(es, pre@[E.Const c],eps,dels,post) | filter2(E.Delta d::es,pre,eps,dels,post)= filter2(es,pre,eps,dels@[E.Delta d],post) | filter2(E.Value v::es, pre, eps,dels,post)=filter2(es, pre@[E.Value v],eps,dels,post) | filter2(E.Epsilon e::es, pre,eps,dels, post)=filter2(es, pre,eps@[E.Epsilon e],dels,post) | filter2(E.Tensor(id,[])::es, pre,eps, dels,post)=filter2(es, pre@[E.Tensor(id,[])],eps,dels,post) | filter2(E.Prod p::es, pre,eps,dels, post)=filter2(p@es,pre,eps,dels,post) | filter2(e::es, pre,eps,dels, post)= filter2(es, pre, eps,dels,post@[e]) (*Only used to find eps, and embedded sums*) fun findeps(e,(E.Epsilon eps)::es,rest)= findeps(e@[E.Epsilon eps],es,rest) | findeps(e, E.Sum(sx,E.Prod(E.Epsilon eps::ps))::es,rest)= (e@[E.Epsilon eps], rest@ps@es,sx) | findeps(e, E.Prod p::es,rest)=findeps(e, p@es,rest) | findeps(e, E.Field f::es,rest)=findeps(e, es,rest@[E.Field f]) | findeps(e, E.Tensor t::es,rest)=findeps(e, es,rest@[E.Tensor t]) | findeps(e,es,rest)= (e, rest@es,[]) fun prodAppPartial ([e1],p1)= E.Apply(E.Partial p1,e1) | prodAppPartial((e1::e2),p1)=let val l= prodAppPartial(e2,p1) val (_,e2')= mkProd[e1,l] val (_,e1')=mkProd(e2@ [E.Apply(E.Partial p1, e1)]) in E.Add[e1',e2'] end (*remove eps Index*) fun rmEpsIndex(i,[],[],[])= [] | rmEpsIndex(i,[],x,[])= [x] | rmEpsIndex(i,[],x,e::es)= rmEpsIndex(i,e,[],es)@[x] | rmEpsIndex(i, ( c ,lb, ub)::b,x, es)= if (i=c) then let val z=[(x@b)] in (case z of [] => es |_=>z@es) end else rmEpsIndex(i,b,x@[(c ,lb, ub)],es) fun doubleEps(count,E.Epsilon (a,b,c),E.Epsilon(d,e,f))=let (*Function is called when eps are being changed to deltas*) fun createDeltas(i,s,t,u,v)= let val c'= rmEpsIndex(E.V i,[],[],count) val d1=[E.Delta(E.V s,E.V u), E.Delta(E.V t,E.V v)] val d2= [E.Delta(E.V s,E.V v), E.Delta(E.V t,E.V u)] in (1,c',d1,d2) end in if(a=d) then createDeltas(a,b,c,e,f) else if(a=e) then createDeltas(a,b,c,f,d) else if(a=f) then createDeltas(a,b,c,d,e) else if(b=d) then createDeltas(b,c,a,e,f) else if(b=e) then createDeltas(b,c,a,f,d) else if(b=f) then createDeltas(b,c,a,d,e) else if(c=d) then createDeltas(c,a,b,e,f) else if(c=e) then createDeltas(c,a,b,f,d) else if(c=f) then createDeltas(c,a,b,d,e) else (0,[],[],[]) end fun distEps([],eps,_,_)=(0,[],[],[],[]) | distEps([e],eps,_,_)=(0,[],[],[],[]) | distEps(e1::e2::[],eps,c1::count,sx)=let val(change,c',d1,d2)= doubleEps([c1@sx]@count,e1,e2) in (case change of 1=>(1, c', eps, d1,d2) |_=> (0,[],[],[],[]) (*end case*)) end | distEps(e1::e2::current,eps,count,sx)=let val(change,c',d1,d2)= doubleEps(count,e1,e2) in (case change of 1=>(1, c', eps@current, d1,d2) |_=> distEps(e2::current, eps@[e1],count,sx) (*end case*)) end (* Transform eps to deltas*) fun epsToDels(count,E.Prod e)= let val (epsA,es,sx)=findeps([],e,[]) val (change, s', eps,d1,d2)= distEps(epsA,[],count,sx) val deltas=E.Sub(E.Prod d1,E.Prod d2) in (case (change,eps,es) of (0,_,_)=>(print "nooo";(0,[],epsA,es)) |(_,[],[]) =>(1,s',[deltas],[]) | _ =>(1,s',[E.Sub( E.Prod(eps@d1@es), E.Prod(eps@d2@es))],[]) (*end case *)) end (*Another strategy. Go through entire expression inside summation and jsut examine index to apply deltas*) (* Apply deltas to tensors/fields*) fun reduceDelta(c, eps, dels, es)=let fun distribute(change,d,dels,[],done)=(change,dels@d,done) | distribute(change,[],[],e,done)=(change,[],done@e) | distribute(change,[],dels,e::es,done)=distribute(change,dels,[],es,done@[e]) | distribute(change,E.Delta(i,j)::ds,dels,e::es,done)=(case e of E.Tensor(id,[tx])=> if(j=tx) then distribute(change@[j],dels@ds,[] ,es ,done@[E.Tensor(id,[i])]) else distribute(change,ds,dels@[E.Delta(i,j)],E.Tensor(id,[tx])::es,done) | E.Field(id,[tx])=> if(j=tx) then distribute(change@[j],dels@ds,[] ,es ,done@[E.Field(id,[i])]) else distribute(change,ds,dels@[E.Delta(i,j)],E.Field(id,[tx])::es,done) | E.Apply(E.Partial d,e)=>let fun distPart([],rest) =(0 ,rest) | distPart(p::pd,rest)= if(p=j) then (1,rest@[i]@pd) else (distPart(pd,rest@[p])) val (change'',p')=distPart(d,[]) in (case change'' of 0=>distribute(change, ds,dels@[E.Delta(i,j)], [E.Apply(E.Partial d, e)]@es,done) |_=> distribute(change@[j], dels@ds,[], es,done@[E.Apply(E.Partial p', e)]) (*end case*)) end | _=>distribute(change,dels@[E.Delta(i,j)]@ds,[],es,done@[e]) (*end case*)) val (change,dels',done)=distribute([],dels,[],es,[]) fun m([],c')=c' | m(e::es,c')= let val s=rmEpsIndex(e,[],[],c') in m(es, s) end val index= m(change, c) in (length change, index,E.Prod (eps@dels'@done)) end (*Apply*) fun mkApply(E.Apply(E.Partial d,e))=(case e of E.Tensor(a,[])=>(1,E.Const 0) | E.Const _ =>(1,E.Const 0) | E.Delta _ =>(1,E.Const 0) | E.Value _ =>(1,E.Const 0) | E.Epsilon _ =>(1,E.Const 0) | E.Conv (fid,alpha,tid, delta)=> (1, E.Conv(fid,alpha, tid, delta@d)) | E.Add l => (1,E.Add(List.map (fn e => E.Apply(E.Partial d, e)) l)) | E.Sub(e2, e3) =>(1, E.Sub(E.Apply(E.Partial d, e2), E.Apply(E.Partial d, e3))) | E.Div(e2, e3) =>(1, E.Div(E.Apply(E.Partial d, e2), e3))(********FIXX******) | E.Apply(E.Partial d2,e2)=>(1,E.Apply(E.Partial(d@d2), e2)) | E.Prod [e1]=>(1,E.Apply(E.Partial d,e1)) | E.Prod es=> let val (pre,eps,dels, post)= filter2(es,[],[],[],[]) val (_,x)=mkProd(pre@eps@dels@[prodAppPartial(post,d)]) in (1,x) end |_=>(0,E.Apply(E.Partial d,e)) (* end case*)) (*Sum Apply*) fun matchEps(2,_,_,_)= 1 (*matched 2*) | matchEps(num,_,_,[])=0 | matchEps(0,_,_,[eps])=0 | matchEps(num,[],rest,eps::epsx)= matchEps(num,rest,[],epsx) | matchEps(num,E.V p::px,rest,eps::epsx)= if(p=eps) then (matchEps(num+1,rest@px,[],epsx)) else matchEps(num,px,rest@[E.V p], eps::epsx) | matchEps(num,p::px,rest,eps)= matchEps(num,px,rest,eps) (* fun epsapply(c,eps,dels,post)=let fun applyEps(change,count,[],[],rest,done)= (print "kkk";(0,E.Const 0)) | applyEps(change,count,eps,epsrest,[],done)=(print "yyyy";(0,E.Const 0)) | applyEps(change,count,[],epsrest,r::rest,done)=(print "bb";applyEps(change,count,epsrest,[],rest,done@[r])) | applyEps(change,count,eps1::eps,epsrest,r::rest,done)=( print "lrr";(case (r,eps1) of (E.Sum(c2,E.Prod(E.Epsilon eps2::s2)),_)=> let val (change', s',_,d1,d2)= distEps([eps1,E.Epsilon eps2],[],count@c2) in (case change' of 1=> let val (_,p1)=mkProd(epsrest@eps@d1@dels@done@s2@rest) val (_,p2)=mkProd(epsrest@eps@d2@dels@done@s2@rest) in (1,E.Sum(s',E.Sub(p1,p2))) end | _=>applyEps(change,count,eps, epsrest@[eps1],r::rest,done) (*end case*)) end | (E.Conv(v,vx, h ,d),E.Epsilon(i,j,k))=> let val change'= matchEps(0,d,[],[i,j,k]) in (case change' of 1=> (1,E.Const 0) |_=> applyEps(0,count,epsrest@[eps1],[],rest,done@[r])) end |_=>applyEps(0,count,epsrest@[eps1],[],rest,done@[r]) (*end case*))) val (change, s', eps',d1,d2)= distEps(eps,[],c) in (case change of 1 => let val (_,p1)=mkProd(eps'@d1@dels@post) val (_,p2)=mkProd(eps'@d2@dels@post) in (print "in changed";(1,E.Sub(E.Sum(s',p1), E.Sum(s',p2)))) end |_=> (print "in apply eps";applyEps(0,c,eps,[],post,[])) (*end case*)) end *) (*print summation range*) fun handleIndex e= (case e of E.C(cx)=> String.concat["'",Int.toString(cx),"'"] | E.V(ix)=> Int.toString(ix) ) fun handleSumRange (mu,lb,ub)= print(String.concat[(handleIndex mu),"[",Int.toString(lb),"-",Int.toString(ub),"]"]) fun printSx e=(print "\n $";List.map handleSumRange e; print "$") fun K gg=String.concatWith "," (List.map (fn (E.V e1,_,_)=> (Int.toString(e1))) gg) fun Kt gg=List.map (fn e1=> print(String.concat["[", (K e1),"]"])) gg (*Apply normalize to each term in product list or Apply normalize to tail of each list*) fun normalize (Ein.EIN{params, index, body}) = let (* val _ = print(String.concat["\n IN NORMALIZE@", P.printbody(body),"@\n"])*) val changed = ref false val sumIndex=ref [] fun rewriteBody body = (case body of E.Const _=> body | E.Tensor _ =>body | E.Field _=> body | E.Delta _ => body | E.Value _ =>body | E.Epsilon _=>body | E.Conv _=>body | E.Neg(E.Neg e)=> rewriteBody e | E.Neg e => E.Neg(rewriteBody e) | E.Add es => let val (change,body')= mkAdd(List.map rewriteBody es) in if (change=1) then ( changed:=true;body') else body' end | E.Sub(a, E.Field f)=> (changed:=true;E.Add[a, E.Neg(E.Field(f))]) | E.Sub(E.Sub(a,b),E.Sub(c,d))=> rewriteBody(E.Sub(E.Add[a,d],E.Add[b,c])) | E.Sub(E.Sub(a,b),e2)=>rewriteBody (E.Sub(a,E.Add[b,e2])) | E.Sub(e1,E.Sub(c,d))=>rewriteBody(E.Add([E.Sub(e1,c),d])) | E.Sub (a,b)=> E.Sub(rewriteBody a, rewriteBody b) | E.Div(E.Div(a,b),E.Div(c,d))=> rewriteBody (E.Div(E.Prod[a,d],E.Prod[b,c])) | E.Div(E.Div(a,b),c)=> rewriteBody (E.Div(a, E.Prod[b,c])) | E.Div(a,E.Div(b,c))=> rewriteBody (E.Div(E.Prod[a,c],b)) | E.Div (a, b) => E.Div(rewriteBody a, rewriteBody b) | E.Partial _=>body | E.Krn(tid,deltas,pos)=> E.Krn(tid,deltas, (rewriteBody pos)) | E.Img(fid,alpha,pos)=> E.Img(fid,alpha, (List.map rewriteBody pos)) (*************Product**************) | E.Prod [e1] => rewriteBody e1 | E.Prod((E.Div(e2,e3))::e4)=> (changed :=true; E.Div(E.Prod([e2]@e4), e3 )) | E.Prod((E.Add(e2))::e3)=> (changed := true; E.Add(List.map (fn e=> E.Prod([e]@e3)) e2)) | E.Prod(e1::E.Add(e2)::e3)=> (changed := true; E.Add(List.map (fn e=> E.Prod([e1,e]@e3)) e2)) | E.Prod((E.Sub(e2,e3))::e4)=> (changed :=true; E.Sub(E.Prod([e2]@e4), E.Prod([e3]@e4 ))) | E.Prod(e1::E.Sub(e2,e3)::e4)=> (changed :=true; E.Sub(E.Prod([e1,e2]@e4), E.Prod([e1,e3]@e4 ))) | E.Prod [E.Partial r1,E.Partial r2]=> (changed:=true;E.Partial(r1@r2)) | E.Prod(E.Partial r1::E.Partial r2::p)=> (changed:=true;E.Prod([E.Partial(r1@r2)]@p)) (*************Product EPS **************) (* Apply (d, e) shoudl be convereted to Conv operator *) | E.Prod(E.Epsilon(i,j,k)::E.Apply(E.Partial d,e)::es)=>let val change= matchEps(0,d,[],[i,j,k]) in case (change,es) of (1,_) =>(changed:=true; E.Const 0) | (_,[]) =>E.Prod[E.Epsilon(i,j,k),rewriteBody (E.Apply(E.Partial d,e))] |(_,_)=> let val a=rewriteBody(E.Prod([E.Apply(E.Partial d,e)]@ es)) val (_,b)=mkProd [E.Epsilon(i,j,k),a] in b end end | E.Prod(E.Epsilon(i,j,k)::E.Conv(V,alpha, h, d)::es)=>let val change= matchEps(0,d,[],[i,j,k]) in case (change,es) of (1,_) =>(changed:=true; E.Const 0) | (_,[]) =>E.Prod[E.Epsilon(i,j,k),E.Conv(V,alpha, h, d)] | (_,_) =>let val a=rewriteBody(E.Prod([E.Conv(V,alpha, h, d)]@ es)) val (_,b) = mkProd [E.Epsilon(i,j,k),a] in b end end | E.Prod[(E.Epsilon(e1,e2,e3)), E.Tensor(_,[E.V i1,E.V i2])]=> if(e2=i1 andalso e3=i2) then (changed :=true;E.Const(0)) else body | E.Prod(E.Epsilon eps1::ps)=> let val ref x=sumIndex val (i,s',e,rest)=epsToDels(x,body) in (case (i, e,rest) of (1,[e1],_) =>(changed:=true;sumIndex:=s';e1) |(0,eps,[])=>body |(0,eps,rest)=> let val p'=rewriteBody(E.Prod rest) val p''= (case p' of E.Prod p=>p |e=>[e]) val(_,b)= mkProd (eps@p'') in b end (*end case*)) end | E.Prod(E.Sum(c1,E.Prod(E.Epsilon e1::es1))::E.Sum(c2,E.Prod(E.Epsilon e2::es2))::es)=>let val ref x=sumIndex val m= Kt x val c'= [c1@c2]@x val (i,s',e,rest)=epsToDels(c', E.Prod([E.Epsilon e1, E.Epsilon e2]@es1@es2@es)) val gsg=Kt s' in (case (i, e,rest) of (1,[e1],_)=> (changed:=true;sumIndex:=s';let val ss=List.nth(s',((length s')-2)) in E.Sum(ss,e1) end ) | _=>let val eA=rewriteBody(E.Sum(c1,E.Prod(E.Epsilon e1::es1))) val eB=rewriteBody(E.Prod(E.Sum(c2,E.Prod(E.Epsilon e2::es2))::es)) val (_,e)=mkProd([eA,eB]) in e end (*end case*)) end | E.Prod(E.Delta d::es)=>let val (pre',eps, dels,post)= filter2(E.Delta d::es,[],[],[],[]) val ref x=sumIndex val (change,i',a)=reduceDelta(x, eps, dels, post) in (case (change,a) of (0, _)=> E.Prod [E.Delta d,rewriteBody(E.Prod es)] | (_, E.Prod p)=>let val (_, p') = mkProd p in (changed:=true;sumIndex:=i';p') end | _ => (changed:=true;sumIndex:=i';a ) (*end case*)) end | E.Prod[e1,e2]=> let val (_,b)=mkProd[rewriteBody e1, rewriteBody e2] in b end | E.Prod(e::es)=>let val e'=rewriteBody e val e2=rewriteBody(E.Prod es) val(_,b)=(case e2 of E.Prod p'=> mkProd([e']@p') |_=>mkProd [e',e2]) in b end (**************Apply**************) (* Apply, Sum*) | E.Apply(E.Partial d,E.Sum (c,e))=> let val ref x=sumIndex val x'=[c]@x val e' = (sumIndex:=x';rewriteBody(E.Apply(E.Partial d, e))) val ref s=sumIndex in (sumIndex:=tl(s);E.Sum(hd(s), e')) end | E.Apply(E.Partial [],e)=> e | E.Apply(E.Partial p,E.Probe(E.Conv(fid,alpha,tid,d),x))=> (changed:=true;E.Probe(E.Conv(fid,alpha,tid,d@p),x)) | E.Apply(E.Partial p,E.Conv(fid,alpha,tid,d))=> (changed:=true;E.Conv(fid,alpha,tid,d@p)) | E.Apply(E.Partial p, e)=>let val body'=E.Apply(E.Partial p, rewriteBody e) val (c, e')=mkApply(body') in (case c of 1=>(changed:=true;e') | _ =>e') end | E.Apply(e1,e2)=>E.Apply(rewriteBody e1, rewriteBody e2) (************** Sum *****************) | E.Sum([],e)=> (changed:=true;rewriteBody e) | E.Sum(_,E.Const c)=>(changed:=true;E.Const c) | E.Sum(c, E.Sum(c', e))=> (changed:=true; E.Sum(c@c', e)) | E.Sum(c, E.Sub(e1,e2))=>(changed:=true; E.Sub(E.Sum(c,e1), E.Sum(c, e2))) | E.Sum(c,(E.Add l))=> (changed:=true;E.Add(List.map (fn e => E.Sum(c,e)) l)) | E.Sum(c,E.Div(e1,e2))=>(changed:=true; E.Div(E.Sum(c,e1),E.Sum(c,e2))) | E.Sum(c, E.Prod(E.Const e::es))=>(changed:=true;E.Prod[E.Const e,E.Sum(c, E.Prod es)]) | E.Sum(c, E.Prod(E.Value v::es))=>(changed:=true; E.Prod [E.Value v, E.Sum(c, E.Prod es)]) | E.Sum(c, E.Prod(E.Tensor(id,[])::es))=> (changed:=true;E.Prod [E.Tensor(id,[]), E.Sum(c, E.Prod es)]) | E.Sum(c,E.Prod e)=> let val e' =rewriteBody(E.Prod e) (*val _=print (String.concat["\n change \n",P.printbody(body ),"\n ==>\n",P.printbody(E.Sum(c,e')),"\n"])*) val b'= (case e' of E.Prod p=>let val (_,b)=mkProd p in b end |_=>e' (* end case*)) val _ =print(P.printbody( b')) in E.Sum(c,b') end | E.Sum(c,e)=>let val ref x=sumIndex val c'=[c]@x val A= Kt c' val e'=(sumIndex:=c';rewriteBody e) val ref s=sumIndex val C= Kt s val z=hd(s) val B= Kt [z] val D=Kt (tl(s)) in (sumIndex:=tl(s);E.Sum(z, e')) end (*******************Probe*****************) | E.Probe(E.Sum(c,s),x)=>(changed:=true;E.Sum(c,E.Probe(s,x))) | E.Probe(E.Tensor t,_)=> E.Tensor t | E.Probe(E.Neg e1,x)=>(changed:=true;E.Neg(E.Probe(e1,x))) | E.Probe(E.Add es,x) => (changed:=true;E.Add(List.map (fn(e1)=>E.Probe(e1,x)) es)) | E.Probe(E.Sub (a,b),x)=> (changed:=true;E.Sub(rewriteBody(E.Probe(a,x)), rewriteBody(E.Probe(b,x)))) | E.Probe(E.Div (a,b),x) => (changed:=true;E.Div(rewriteBody(E.Probe(a, x)),b)) | E.Probe(E.Prod p, x)=>let val (p',x')= (rewriteBody (E.Prod p), rewriteBody x) fun probeprod([],[e1]) =e1 | probeprod([],rest) = E.Prod rest | probeprod(E.Const c::es,rest)= (changed:=true;probeprod(es,rest@[E.Const c])) | probeprod(E.Tensor t::es,rest)= (changed:=true;probeprod(es,rest@[E.Tensor t])) | probeprod(E.Krn e::es, rest)= (changed:=true;probeprod(es, rest@[E.Krn e])) | probeprod(E.Delta e::es, rest)= (changed:=true;probeprod(es, rest@[E.Delta e])) | probeprod(E.Value e::es, rest)= (changed:=true;probeprod(es, rest@[E.Value e])) | probeprod(E.Epsilon e::es, rest)= (changed:=true;probeprod(es, rest@[E.Epsilon e])) | probeprod(E.Partial e::es, rest)= (changed:=true;probeprod(es, rest@[E.Partial e])) | probeprod(E.Field f::es,rest)= (changed:=true;print "\n $#$ Found Field";probeprod(es,rest@[E.Probe(E.Field f, x')])) (* (changed:=true;E.Prod(rest@[E.Probe(E.Field f, x')] @es))*) | probeprod(E.Conv f::es,rest)= (changed:=true;print "\n $#$ Found Field";probeprod(es,rest@[E.Probe(E.Conv f, x')])) (*(changed:=true;E.Prod(rest@[E.Probe(E.Conv f, x')] @es))*) | probeprod(E.Prod p::es , rest)= (changed:=true;probeprod(p@es,rest)) | probeprod(_,[])=body | probeprod(e1::es, rest)=let val e'= rewriteBody(E.Prod(e1::es)) val e''= rewriteBody(E.Probe(e',x')) in (changed:=true;E.Prod(rest@[e''])) end in (case p' of E.Prod pro=>probeprod(p,[]) |_=> E.Probe(p',x') (*end case*)) end | E.Probe(u,v)=> (E.Probe(rewriteBody u, rewriteBody v)) (*end case*)) fun loop(body ,count) = let val body' = rewriteBody body in if !changed then (print(String.concat["\n=>",P.printbody(body')]); changed := false ;sumIndex:=[];loop(body',count+1)) else (body',count) end val (b,count) = loop(body,0) val _ = print(String.concat["\n out of normalize \n",P.printbody(b),"\n Final CounterXX:",Int.toString(count),"\n\n"]) in (Ein.EIN{params=params, index=index, body=b},count) end end end (* local *)
Click to toggle
does not end with </html> tag
does not end with </body> tag
The output has ended thus: (Ein.EIN{params=params, index=index, body=b},count) end end end (* local *)