(* int-binary-map.sml
*
* COPYRIGHT (c) 1993 by AT&T Bell Laboratories. See COPYRIGHT file for details.
*
* This code was adapted from Stephen Adams' binary tree implementation
* of applicative integer sets.
*
* Copyright 1992 Stephen Adams.
*
* This software may be used freely provided that:
* 1. This copyright notice is attached to any copy, derived work,
* or work including all or part of this software.
* 2. Any derived work must contain a prominent notice stating that
* it has been altered from the original.
*
*
* Name(s): Stephen Adams.
* Department, Institution: Electronics & Computer Science,
* University of Southampton
* Address: Electronics & Computer Science
* University of Southampton
* Southampton SO9 5NH
* Great Britian
* E-mail: sra@ecs.soton.ac.uk
*
* Comments:
*
* 1. The implementation is based on Binary search trees of Bounded
* Balance, similar to Nievergelt & Reingold, SIAM J. Computing
* 2(1), March 1973. The main advantage of these trees is that
* they keep the size of the tree in the node, giving a constant
* time size operation.
*
* 2. The bounded balance criterion is simpler than N&R's alpha.
* Simply, one subtree must not have more than `weight' times as
* many elements as the opposite subtree. Rebalancing is
* guaranteed to reinstate the criterion for weight>2.23, but
* the occasional incorrect behaviour for weight=2 is not
* detrimental to performance.
*
* Altered to work as a geneal intmap - Emden Gansner
*)
structure IntBinaryMap :> ORD_MAP where type Key.ord_key = Int.int =
struct
structure Key =
struct
type ord_key = Int.int
val compare = Int.compare
end
(*
** val weight = 3
** fun wt i = weight * i
*)
fun wt (i : int) = i + i + i
datatype 'a map
= E
| T of {
key : int,
value : 'a,
cnt : int,
left : 'a map,
right : 'a map
}
fun numItems E = 0
| numItems (T{cnt,...}) = cnt
local
fun N(k,v,E,E) = T{key=k,value=v,cnt=1,left=E,right=E}
| N(k,v,E,r as T n) = T{key=k,value=v,cnt=1+(#cnt n),left=E,right=r}
| N(k,v,l as T n,E) = T{key=k,value=v,cnt=1+(#cnt n),left=l,right=E}
| N(k,v,l as T n,r as T n') =
T{key=k,value=v,cnt=1+(#cnt n)+(#cnt n'),left=l,right=r}
fun single_L (a,av,x,T{key=b,value=bv,left=y,right=z,...}) =
N(b,bv,N(a,av,x,y),z)
| single_L _ = raise Match
fun single_R (b,bv,T{key=a,value=av,left=x,right=y,...},z) =
N(a,av,x,N(b,bv,y,z))
| single_R _ = raise Match
fun double_L (a,av,w,T{key=c,value=cv,left=T{key=b,value=bv,left=x,right=y,...},right=z,...}) =
N(b,bv,N(a,av,w,x),N(c,cv,y,z))
| double_L _ = raise Match
fun double_R (c,cv,T{key=a,value=av,left=w,right=T{key=b,value=bv,left=x,right=y,...},...},z) =
N(b,bv,N(a,av,w,x),N(c,cv,y,z))
| double_R _ = raise Match
fun T' (k,v,E,E) = T{key=k,value=v,cnt=1,left=E,right=E}
| T' (k,v,E,r as T{right=E,left=E,...}) =
T{key=k,value=v,cnt=2,left=E,right=r}
| T' (k,v,l as T{right=E,left=E,...},E) =
T{key=k,value=v,cnt=2,left=l,right=E}
| T' (p as (_,_,E,T{left=T _,right=E,...})) = double_L p
| T' (p as (_,_,T{left=E,right=T _,...},E)) = double_R p
(* these cases almost never happen with small weight*)
| T' (p as (_,_,E,T{left=T{cnt=ln,...},right=T{cnt=rn,...},...})) =
if ln < rn then single_L p else double_L p
| T' (p as (_,_,T{left=T{cnt=ln,...},right=T{cnt=rn,...},...},E)) =
if ln > rn then single_R p else double_R p
| T' (p as (_,_,E,T{left=E,...})) = single_L p
| T' (p as (_,_,T{right=E,...},E)) = single_R p
| T' (p as (k,v,l as T{cnt=ln,left=ll,right=lr,...},
r as T{cnt=rn,left=rl,right=rr,...})) =
if rn >= wt ln then (*right is too big*)
let val rln = numItems rl
val rrn = numItems rr
in
if rln < rrn then single_L p else double_L p
end
else if ln >= wt rn then (*left is too big*)
let val lln = numItems ll
val lrn = numItems lr
in
if lrn < lln then single_R p else double_R p
end
else T{key=k,value=v,cnt=ln+rn+1,left=l,right=r}
local
fun min (T{left=E,key,value,...}) = (key,value)
| min (T{left,...}) = min left
| min _ = raise Match
fun delmin (T{left=E,right,...}) = right
| delmin (T{key,value,left,right,...}) = T'(key,value,delmin left,right)
| delmin _ = raise Match
in
fun delete' (E,r) = r
| delete' (l,E) = l
| delete' (l,r) = let val (mink,minv) = min r in
T'(mink,minv,l,delmin r)
end
end
in
val empty = E
fun insert (E,x,v) = T{key=x,value=v,cnt=1,left=E,right=E}
| insert (T(set as {key,left,right,value,...}),x,v) =
if key > x then T'(key,value,insert(left,x,v),right)
else if key < x then T'(key,value,left,insert(right,x,v))
else T{key=x,value=v,left=left,right=right,cnt= #cnt set}
fun find (set, x) = let
fun mem E = NONE
| mem (T(n as {key,left,right,...})) =
if x > key then mem right
else if x < key then mem left
else SOME(#value n)
in
mem set
end
fun remove (E,x) = raise LibBase.NotFound
| remove (set as T{key,left,right,value,...},x) =
if key > x then
let val (left',v) = remove(left,x)
in (T'(key,value,left',right),v) end
else if key < x then
let val (right',v) = remove(right,x)
in (T'(key,value,left,right'),v) end
else (delete'(left,right),value)
fun listItems d = let
fun d2l (E, l) = l
| d2l (T{key,value,left,right,...}, l) =
d2l(left, value::(d2l(right,l)))
in
d2l (d,[])
end
fun listItemsi d = let
fun d2l (E, l) = l
| d2l (T{key,value,left,right,...}, l) =
d2l(left, (key,value)::(d2l(right,l)))
in
d2l (d,[])
end
local
fun next ((t as T{right, ...})::rest) = (t, left(right, rest))
| next _ = (E, [])
and left (E, rest) = rest
| left (t as T{left=l, ...}, rest) = left(l, t::rest)
in
fun collate cmpRng (s1, s2) = let
fun cmp (t1, t2) = (case (next t1, next t2)
of ((E, _), (E, _)) => EQUAL
| ((E, _), _) => LESS
| (_, (E, _)) => GREATER
| ((T{key=x1, value=y1, ...}, r1), (T{key=x2, value=y2, ...}, r2)) => (
case Key.compare(x1, x2)
of EQUAL => (case cmpRng(y1, y2)
of EQUAL => cmp (r1, r2)
| order => order
(* end case *))
| order => order
(* end case *))
(* end case *))
in
cmp (left(s1, []), left(s2, []))
end
end (* local *)
fun appi f d = let
fun appf E = ()
| appf (T{key,value,left,right,...}) = (
appf left; f(key,value); appf right)
in
appf d
end
fun app f d = appi (fn (_, v) => f v) d
fun mapi f d = let
fun mapf E = E
| mapf (T{key,value,left,right,cnt}) = let
val left' = mapf left
val value' = f(key, value)
val right' = mapf right
in
T{cnt=cnt, key=key, value=value', left = left', right = right'}
end
in
mapf d
end
fun map f d = mapi (fn (_, x) => f x) d
fun foldli f init d = let
fun fold (E,v) = v
| fold (T{key,value,left,right,...},v) =
fold (right, f(key, value, fold(left, v)))
in
fold (d, init)
end
fun foldl f init d = foldli (fn (_, v, accum) => f (v, accum)) init d
fun foldri f init d = let
fun fold (E,v) = v
| fold (T{key,value,left,right,...},v) =
fold (left, f(key, value, fold(right, v)))
in
fold (d, init)
end
fun foldr f init d = foldri (fn (_, v, accum) => f (v, accum)) init d
end (* local *)
(* the following are generic implementations of the unionWith and intersectWith
* operetions. These should be specialized for the internal representations
* at some point.
*)
fun unionWith f (m1, m2) = let
fun ins f (key, x, m) = (case find(m, key)
of NONE => insert(m, key, x)
| (SOME x') => insert(m, key, f(x, x'))
(* end case *))
in
if (numItems m1 > numItems m2)
then foldli (ins (fn (a, b) => f (b, a))) m1 m2
else foldli (ins f) m2 m1
end
fun unionWithi f (m1, m2) = let
fun ins f (key, x, m) = (case find(m, key)
of NONE => insert(m, key, x)
| (SOME x') => insert(m, key, f(key, x, x'))
(* end case *))
in
if (numItems m1 > numItems m2)
then foldli (ins (fn (k, a, b) => f (k, b, a))) m1 m2
else foldli (ins f) m2 m1
end
fun intersectWith f (m1, m2) = let
(* iterate over the elements of m1, checking for membership in m2 *)
fun intersect f (m1, m2) = let
fun ins (key, x, m) = (case find(m2, key)
of NONE => m
| (SOME x') => insert(m, key, f(x, x'))
(* end case *))
in
foldli ins empty m1
end
in
if (numItems m1 > numItems m2)
then intersect f (m1, m2)
else intersect (fn (a, b) => f(b, a)) (m2, m1)
end
fun intersectWithi f (m1, m2) = let
(* iterate over the elements of m1, checking for membership in m2 *)
fun intersect f (m1, m2) = let
fun ins (key, x, m) = (case find(m2, key)
of NONE => m
| (SOME x') => insert(m, key, f(key, x, x'))
(* end case *))
in
foldli ins empty m1
end
in
if (numItems m1 > numItems m2)
then intersect f (m1, m2)
else intersect (fn (k, a, b) => f(k, b, a)) (m2, m1)
end
(* this is a generic implementation of filter. It should
* be specialized to the data-structure at some point.
*)
fun filter predFn m = let
fun f (key, item, m) = if predFn item
then insert(m, key, item)
else m
in
foldli f empty m
end
fun filteri predFn m = let
fun f (key, item, m) = if predFn(key, item)
then insert(m, key, item)
else m
in
foldli f empty m
end
(* this is a generic implementation of mapPartial. It should
* be specialized to the data-structure at some point.
*)
fun mapPartial f m = let
fun g (key, item, m) = (case f item
of NONE => m
| (SOME item') => insert(m, key, item')
(* end case *))
in
foldli g empty m
end
fun mapPartiali f m = let
fun g (key, item, m) = (case f(key, item)
of NONE => m
| (SOME item') => insert(m, key, item')
(* end case *))
in
foldli g empty m
end
end