\documentclass[11pt]{article} \input{defs} \setlength{\textwidth}{6in} \setlength{\oddsidemargin}{0.25in} \setlength{\evensidemargin}{0.25in} \setlength{\parskip}{5pt} \title{Typechecking Diderot} \author{ Gordon Kindlmann \\ University of Chicago \\ {\small\tt{}glk@cs.uchicago.edu} \\ \and John Reppy \\ University of Chicago \\ {\small\tt{}jhr@cs.uchicago.edu} \\ } \date{\today} \begin{document} \maketitle \thispagestyle{empty} \section{Introduction} This document looks at the rules for typechecking Diderot. \section{Types} The syntax of Diderot types is given in \figref{fig:types}. \begin{figure}[t] \begin{displaymath} \begin{array}{rclr} \iota & ::= & \TYconst & \text{type constants} \\ & \mid & \TYint & \text{integers} \\[1em] \tau & ::= & \iota \\ & \mid & \theta \\ & \mid & \TYmatrix{n}{m} & \text{$n\times{}m$ matrix} \\ & \mid & \TYimage{d}{\mu} & \text{$d$-dimension image of $\mu$ values}\\ & \mid & \TYkern{k} & \text{convolution kernel with $k$ derivatives} \\ & \mid & \TYfield{k}{d}{\theta} & \text{$d$-dimension field of $\theta$ values with $k$ derivatives} \\ \sigma & ::= \ \end{array}% \end{displaymath}% where $o\in\Nat$ is the tensor order, $d,n,m\in\SET{2,3}$ are dimensions, and $k\in\Nat$ is the differentiability of a field. \caption{Diderot types} \label{fig:types} \end{figure}% \end{document}
Click to toggle
does not end with </html> tag
does not end with </body> tag
The output has ended thus: rentiability of a field. \caption{Diderot types} \label{fig:types} \end{figure}% \end{document}