(* high-to-mid.sml * * This code is part of the Diderot Project (http://diderot-language.cs.uchicago.edu) * * COPYRIGHT (c) 2015 The University of Chicago * All rights reserved. * * Translation from HighIL to MidIL representations. *) structure HighToMid : sig val translate : HighIL.program -> MidIL.program end = struct structure SrcIL = HighIL structure SrcTy = HighILTypes structure SrcOp = HighOps structure SrcSV = SrcIL.StateVar structure VTbl = SrcIL.Var.Tbl structure DstIL = MidIL structure DstTy = MidILTypes structure DstOp = MidOps structure InP = Inputs fun getRHS x = (case SrcIL.Var.binding x of SrcIL.VB_RHS(SrcIL.OP(rator, args)) => (rator, args) | SrcIL.VB_RHS(SrcIL.VAR x') => getRHS x' | vb => raise Fail(concat[ "expected rhs operator for ", SrcIL.Var.toString x, "but found ", SrcIL.vbToString vb ]) (* end case *)) fun getRHSImage x = (case getRHS x of (SrcOp.LoadImage(_, _, v), _) => v | (SrcOp.Input(InP.INP{init=SOME(InP.Proxy(_, v)), ...}), _) => v | (SrcOp.Input(InP.INP{init=SOME(InP.Image v), ...}), _) => v | _ => raise Fail "bogus image variable" (* end case *)) fun cvtTy SrcTy.BoolTy = DstTy.BoolTy | cvtTy SrcTy.StringTy = DstTy.StringTy | cvtTy SrcTy.IntTy = DstTy.intTy | cvtTy (SrcTy.TensorTy dd) = DstTy.tensorTy dd | cvtTy (SrcTy.TupleTy tys) = DstTy.TupleTy(List.map cvtTy tys) | cvtTy (SrcTy.SeqTy(ty, n)) = DstTy.SeqTy(cvtTy ty, n) (* we replace Kernel and Field operations by 0, so the types are mapped to int *) | cvtTy SrcTy.KernelTy = DstTy.intTy | cvtTy SrcTy.FieldTy = DstTy.intTy | cvtTy ty = raise Fail("unexpected type " ^ SrcTy.toString ty) (* instantiate the translation environment *) local type var_env = DstIL.var VTbl.hash_table type state_var_env = DstIL.state_var SrcSV.Tbl.hash_table fun rename (env : var_env, x) = (case VTbl.find env x of SOME x' => x' | NONE => let val dstTy = (case SrcIL.Var.ty x of SrcTy.ImageTy _ => (* for variables with image type, we need more detailed information * about the image for the MidIL type. *) DstTy.ImageTy(getRHSImage x) | _ => cvtTy(SrcIL.Var.ty x) (* end case *)) val x' = DstIL.Var.new (SrcIL.Var.name x, dstTy) in VTbl.insert env (x, x'); x' end (* end case *)) handle Fail msg => raise Fail(concat["rename(_, ", SrcIL.Var.toString x, "): ", msg]) fun renameSV (env : state_var_env, x) = (case SrcSV.Tbl.find env x of SOME x' => x' | NONE => let val dstTy = cvtTy (SrcSV.ty x) val x' = DstIL.StateVar.new (SrcSV.isOutput x, SrcSV.name x, dstTy) in SrcSV.Tbl.insert env (x, x'); x' end (* end case *)) in structure Env = TranslateEnvFn ( struct structure SrcIL = SrcIL structure DstIL = DstIL type var_env = var_env type state_var_env = state_var_env val rename = rename val renameSV = renameSV end) end (* expand raising a real to an integer power. When we know the exponent, we can inline * multiplications. *) fun expandPower (env, y, [x, n]) = let fun getConst x = (case SrcIL.Var.binding x of SrcIL.VB_RHS(SrcIL.VAR x') => getConst x' | SrcIL.VB_RHS(SrcIL.LIT(Literal.Int n)) => SOME n | vb => NONE (* end case *)) val x = Env.rename(env, x) fun pow () = let val t = DstIL.Var.new("n", DstTy.realTy) in [ (t, DstIL.OP(DstOp.IntToReal, [Env.rename(env, n)])), (y, DstIL.APPLY(MathFuns.pow, [x, t])) ] end in case getConst n of SOME 0 => [(y, DstIL.LIT(Literal.Float(FloatLit.one)))] | SOME 1 => [(y, DstIL.VAR x)] | SOME ~1 => let val t = DstIL.Var.new("one", DstTy.realTy) in [ (t, DstIL.LIT(Literal.Float(FloatLit.one))), (y, DstIL.OP(DstOp.Div DstTy.realTy, [t, x])) ] end | SOME 2 => [(y, DstIL.OP(DstOp.Mul DstTy.realTy, [x, x]))] (* FIXME: expand into multiplications | SOME n => *) | SOME _ => pow() | NONE => pow() (* end case *) end (* expand the field Inside operator into a image-space test *) fun expandInside (env, result, pos, fld) = (case getRHS fld of (SrcOp.Field d, [img, h]) => (case (getRHSImage img, getRHS h) of (v, (SrcOp.Kernel(h, _), [])) => let val pos = Env.rename (env, pos) val img = Env.rename (env, img) val imgPos = DstIL.Var.new ("x", DstTy.vecTy d) val s = Kernel.support h in [ (imgPos, DstIL.OP(DstOp.PosToImgSpace v, [img, pos])), (result, DstIL.OP(DstOp.Inside(v, s), [imgPos, img])) ] end | _ => raise Fail "bogus kernel binding" (* end case *)) | _ => raise Fail "bogus field binding" (* end case *)) fun expandProbe (env, result, fld, pos) = (case getRHS fld of (SrcOp.Field _, [img, h]) => (case (getRHSImage img, getRHS h) of (v, (SrcOp.Kernel(h, k), _)) => Probe.expand { result = result, img = Env.rename (env, img), v = v, h = h, k = k, pos = Env.rename (env, pos) } | _ => raise Fail "bogus image/kernel binding" (* end case *)) | _ => raise Fail "bogus field binding" (* end case *)) (* expand the outer product of vectors v1 and v2, with dimensions d1 and d2 (resp.) *) fun expandOuter (env, y, d1, d2, v1, v2) = let val rowTy = DstTy.tensorTy[d1] val colTy = DstTy.tensorTy[d2] fun mkVar (i, j) = DstIL.Var.new (concat["o_", Int.toString i, "_", Int.toString j], DstTy.realTy) fun mkRowVar i = DstIL.Var.new ("r_" ^ Int.toString i, DstTy.TensorTy[d2]) fun rowLp (i, rowVars, code) = if (i < d1) then let fun colLp (j, colVars, code) = if (j < d2) then let val a = DstIL.Var.new("a", DstTy.realTy) val b = DstIL.Var.new("b", DstTy.realTy) val x = mkVar (i, j) val code = (x, DstIL.OP(DstOp.Mul DstTy.realTy, [a, b])) :: (b, DstIL.OP(DstOp.Index(colTy, j), [v2])) :: (a, DstIL.OP(DstOp.Index(rowTy, i), [v1])) :: code in colLp (j+1, x::colVars, code) end else let val r = mkRowVar i in rowLp (i+1, r::rowVars, (r, DstIL.CONS(rowTy, List.rev colVars)) :: code) end in colLp (0, [], code) end else List.rev ((y, DstIL.CONS(DstTy.TensorTy[d1,d2], List.rev rowVars)) :: code) in rowLp (0, [], []) end fun arity (SrcTy.TensorTy[]) = 1 | arity (SrcTy.TensorTy[d]) = d | arity _ = raise Fail "arity" fun expandOp (env, y, rator, args) = let fun assign rator' = [(y, DstIL.OP(rator', Env.renameList(env, args)))] fun cvtToInt rator' = let val t = DstIL.Var.new ("t", DstTy.realTy) in [ (t, DstIL.OP(rator', Env.renameList(env, args))), (y, DstIL.OP(DstOp.RealToInt 1, [t])) ] end fun dummy () = [(y, DstIL.LIT(Literal.Int 0))] in case rator of SrcOp.Add ty => assign (DstOp.Add(cvtTy ty)) | SrcOp.Sub ty => assign (DstOp.Sub(cvtTy ty)) | SrcOp.Mul ty => assign (DstOp.Mul(cvtTy ty)) | SrcOp.Div ty => assign (DstOp.Div(cvtTy ty)) | SrcOp.Neg ty => assign (DstOp.Neg(cvtTy ty)) | SrcOp.Abs ty => assign (DstOp.Abs(cvtTy ty)) | SrcOp.LT ty => assign (DstOp.LT(cvtTy ty)) | SrcOp.LTE ty => assign (DstOp.LTE(cvtTy ty)) | SrcOp.EQ ty => assign (DstOp.EQ(cvtTy ty)) | SrcOp.NEQ ty => assign (DstOp.NEQ(cvtTy ty)) | SrcOp.GT ty => assign (DstOp.GT(cvtTy ty)) | SrcOp.GTE ty => assign (DstOp.GTE(cvtTy ty)) | SrcOp.Power => expandPower(env, y, args) | SrcOp.Not => assign DstOp.Not | SrcOp.Max => assign DstOp.Max | SrcOp.Min => assign DstOp.Min | SrcOp.Clamp ty => assign (DstOp.Clamp(cvtTy ty)) | SrcOp.Lerp ty => assign (DstOp.Lerp(cvtTy ty)) | SrcOp.Dot ty => assign (DstOp.Dot(arity ty)) | SrcOp.MulVecMat(SrcTy.TensorTy[d1, d2]) => assign (DstOp.MulVecMat(d1, d2)) | SrcOp.MulMatVec(SrcTy.TensorTy[d1, d2]) => assign (DstOp.MulMatVec(d1, d2)) | SrcOp.MulMatMat(SrcTy.TensorTy[d1, d2], SrcTy.TensorTy[d2', d3]) => assign (DstOp.MulMatMat(d1, d2, d3)) | SrcOp.MulVecTen3(SrcTy.TensorTy[d1, d2, d3]) => assign(DstOp.MulVecTen3(d1, d2, d3)) | SrcOp.MulTen3Vec(SrcTy.TensorTy[d1, d2, d3]) => assign(DstOp.MulTen3Vec(d1, d2, d3)) | SrcOp.ColonMul(ty1, ty2) => assign(DstOp.ColonMul(cvtTy ty1, cvtTy ty2)) | SrcOp.Cross => assign DstOp.Cross | SrcOp.Outer(SrcTy.TensorTy[d1, d2]) => let val [v1, v2] = Env.renameList(env, args) in expandOuter (env, y, d1, d2, v1, v2) end | SrcOp.Norm ty => assign (DstOp.Norm(cvtTy ty)) | SrcOp.Normalize ty => assign (DstOp.Normalize(arity ty)) | SrcOp.Scale ty => assign (DstOp.Scale(cvtTy ty)) | SrcOp.PrincipleEvec ty => assign (DstOp.PrincipleEvec(cvtTy ty)) | SrcOp.Identity n => assign (DstOp.Identity n) | SrcOp.Zero ty => assign (DstOp.Zero(cvtTy ty)) | SrcOp.Trace(SrcTy.TensorTy[d, _]) => assign (DstOp.Trace d) | SrcOp.Transpose(d1, d2) => assign (DstOp.Transpose(d1, d2)) | SrcOp.Slice(ty, mask) => raise Fail "FIXME: Slice" | SrcOp.TensorSub(ty as SrcTy.TensorTy _) => assign (DstOp.Subscript(cvtTy ty)) | SrcOp.Select(ty as SrcTy.TupleTy _, i) => assign (DstOp.Select(cvtTy ty, i)) | SrcOp.Select(ty as SrcTy.SeqTy _, i) => assign (DstOp.Index(cvtTy ty, i)) | SrcOp.SeqSub(ty as SrcTy.SeqTy _) => assign (DstOp.Subscript(cvtTy ty)) | SrcOp.IntToReal => assign DstOp.IntToReal | SrcOp.TruncToInt => cvtToInt (DstOp.Trunc 1) | SrcOp.RoundToInt => cvtToInt (DstOp.Round 1) | SrcOp.CeilToInt => cvtToInt (DstOp.Ceiling 1) | SrcOp.FloorToInt => cvtToInt (DstOp.Floor 1) | SrcOp.Kernel _ => dummy() | SrcOp.Inside _ => (case args of [pos, fld] => expandInside(env, y, pos, fld) (* end case *)) | SrcOp.Probe _ => (case args of [fld, pos] => expandProbe(env, y, fld, pos) (* end case *)) (* fields are used in the Inside and Probe operations, but are otherwise ignored *) | SrcOp.Field _ => dummy() | SrcOp.AddField => dummy() | SrcOp.SubField => dummy() | SrcOp.ScaleField => dummy() | SrcOp.NegField => dummy() | SrcOp.DiffField => dummy() | SrcOp.LoadImage(ty, nrrd, info) => assign (DstOp.LoadImage(DstTy.ImageTy info, nrrd, info)) | SrcOp.Input inp => (case Inputs.imageInfo inp of SOME info => let val Inputs.INP{name, desc, init, ...} = inp in assign (DstOp.Input(Inputs.INP{ ty = DstTy.ImageTy info, name = name, desc = desc, init = init })) end | _ => assign (DstOp.Input(Inputs.map cvtTy inp)) (* end case *)) | rator => raise Fail("bogus operator " ^ SrcOp.toString rator) (* end case *) end handle ex => (print(concat["error converting ", SrcOp.toString rator, "\n"]); raise ex) (* expand a SrcIL assignment to a list of DstIL assignments *) fun expand (env, (y, rhs)) = let fun assign rhs = [DstIL.ASSGN(Env.rename (env, y), rhs)] in case rhs of SrcIL.STATE x => assign (DstIL.STATE(Env.renameSV(env, x))) | SrcIL.VAR x => assign (DstIL.VAR(Env.rename(env, x))) | SrcIL.LIT lit => assign (DstIL.LIT lit) | SrcIL.OP(rator, args) => List.map DstIL.ASSGN (expandOp (env, Env.rename (env, y), rator, args)) | SrcIL.APPLY(f, args) => assign(DstIL.APPLY(f, Env.renameList(env, args))) | SrcIL.CONS(ty, args) => assign (DstIL.CONS(cvtTy ty, Env.renameList(env, args))) (* end case *) end (* expand a SrcIL multi-assignment to a DstIL CFG *) fun mexpand (env, (ys, rator, xs)) = let val ys' = Env.renameList(env, ys) val rator' = (case rator of SrcOp.Eigen2x2 => DstOp.EigenVecs2x2 | SrcOp.Eigen3x3 => DstOp.EigenVecs3x3 | SrcOp.Print tys => DstOp.Print(List.map cvtTy tys) | _ => raise Fail("bogus operator " ^ SrcOp.toString rator) (* end case *)) val xs' = Env.renameList(env, xs) val nd = DstIL.Node.mkMASSIGN(ys', rator', xs') in DstIL.CFG{entry=nd, exit=nd} end structure Trans = TranslateFn ( struct open Env val expand = DstIL.CFG.mkBlock o expand val mexpand = mexpand end) fun translate prog = let val prog = Trans.translate prog in MidILCensus.init prog; prog end end