5 
SHORT TERM ============= (*needed* for streamlines & tractography) 
SHORT TERM ============= (*needed* for streamlines & tractography) 
6 
======================== 
======================== 
7 


8 
[GLK:3] Add sequence types (needed for evals & evecs) 
Remove CL from compiler [DONE] 
9 


10 

[GLK:2] Add sequence types (needed for evals & evecs) 
11 
syntax 
syntax 
12 
types: ty '{' INT '}' 
types: ty '{' INT '}' 
13 
value construction: '{' e1 ',' … ',' en '}' 
value construction: '{' e1 ',' … ',' en '}' 
14 
indexing: e '{' e '}' 
indexing: e '{' e '}' 
15 


16 
[GLK:4] evals & evecs for symmetric tensor[2,2] and 
[GLK:3] evals & evecs for symmetric tensor[2,2] and 
17 
tensor[3,3] (requires sequences) 
tensor[3,3] (requires sequences) 
18 


19 
ability to emit/track/record variables into dynamically resized 
ability to emit/track/record variables into dynamically resized 
20 
runtime buffer 
runtime buffer 
21 


22 
tensor fields: convolution on general tensor images 
tensor fields: convolution on general tensor images (order > 1) 
23 


24 
======================== 
======================== 
25 
SHORTISH TERM ========= (to make using Diderot less annoying to 
SHORTISH TERM ========= (to make using Diderot less annoying to 
33 
(currently only scalars & vectors). Want to add some regression tests 
(currently only scalars & vectors). Want to add some regression tests 
34 
based on this and currently can't 
based on this and currently can't 
35 


36 
[GLK:1] Add a clamp function, which takes three arguments; either 
[GLK:1] Proper handling of stabilize method 

three scalars: 


clamp(lo, hi, x) = max(lo, min(hi, x)) 


or three vectors of the same size: 


clamp(lo, hi, [x,y]) = [max(lo[0], min(hi[0], x)), 


max(lo[1], min(hi[1], y))] 


This would be useful in many current Diderot programs. 


One question: clamp(x, lo, hi) is the argument order used in OpenCL 


and other places, but clamp(lo, hi, x) is much more consistent with 


lerp(lo, hi, x), hence GLK's preference 





[GLK:2] Proper handling of stabilize method 

37 


38 
allow "*" to represent "modulate": percomponent multiplication of 
allow "*" to represent "modulate": percomponent multiplication of 
39 
vectors, and vectors only (not tensors of order 2 or higher). Once 
vectors, and vectors only (not tensors of order 2 or higher). Once 
43 
implicit type promotion of integers to reals where reals are 
implicit type promotion of integers to reals where reals are 
44 
required (e.g. not exponentiation "^") 
required (e.g. not exponentiation "^") 
45 


46 
[GLK:5] Save Diderot output to nrrd, instead of "mip.txt" 
[GLK:4] Save Diderot output to nrrd, instead of "mip.txt" 
47 
For grid of strands, save to similarlyshaped array 
For grid of strands, save to similarlyshaped array 
48 
For list of strands, save to long 1D (or 2D for nonscalar output) list 
For list of strands, save to long 1D (or 2D for nonscalar output) list 
49 
For ragged things (like tractography output), will need to save both 
For ragged things (like tractography output), will need to save both 
50 
complete list of values, as well as list of start indices and lengths 
complete list of values, as well as list of start indices and lengths 
51 
to index into complete list 
to index into complete list 
52 


53 
[GLK:6] Use of Teem's "hest" commandline parser for getting 
[GLK:5] Use of Teem's "hest" commandline parser for getting 
54 
any "input" variables that are not defined in the source file. 
any "input" variables that are not defined in the source file. [DONE] 
55 


56 
[GLK:7] ability to declare a field so that probe positions are 
[GLK:6] ability to declare a field so that probe positions are 
57 
*always* "inside"; with various ways of mapping the known image values 
*always* "inside"; with various ways of mapping the known image values 
58 
to nonexistant index locations. One possible syntax emphasizes that 
to nonexistant index locations. One possible syntax emphasizes that 
59 
there is a index mapping function that logically precedes convolution: 
there is a index mapping function that logically precedes convolution: 
107 
Allow integer exponentiation ("^2") to apply to square matrices, 
Allow integer exponentiation ("^2") to apply to square matrices, 
108 
to represent repeated matrix multiplication 
to represent repeated matrix multiplication 
109 



Alow X *= Y, X /= Y, X += Y, X = Y to mean what they do in C, 


provided that X*Y, X/Y, X+Y, XY are already supported. 


Nearly every Diderot program would be simplified by this. 




110 
Put small 1D and 2D fields, when reconstructed specifically by tent 
Put small 1D and 2D fields, when reconstructed specifically by tent 
111 
and when differentiation is not needed, into faster texture buffers. 
and when differentiation is not needed, into faster texture buffers. 
112 
test/illustvr.diderot is good example of program that uses multiple 
test/illustvr.diderot is good example of program that uses multiple 
113 
such 1D fields basically as lookuptablebased function evaluation 
such 1D fields basically as lookuptablebased function evaluation 
114 


115 
expand trace in mid to low translation 
expand trace in mid to low translation [DONE] 
116 


117 
extend norm (exp) to all tensor types [DONE for vectors and matrices] 
extend norm (exp) to all tensor types [DONE for vectors and matrices] 
118 


151 
(but we should only duplicate over the liverange of the result of the 
(but we should only duplicate over the liverange of the result of the 
152 
conditional. 
conditional. 
153 


154 
[GLK:8] Want: nontrivial field expressions & functions. 
[GLK:7] Want: nontrivial field expressions & functions. 
155 
scalar fields from scalar fields F and G: 
scalar fields from scalar fields F and G: 
156 
field#0(2)[] X = (sin(F) + 1.0)/2; 
field#0(2)[] X = (sin(F) + 1.0)/2; 
157 
field#0(2)[] X = F*G; 
field#0(2)[] X = F*G; 
253 
// uncaught exception Size [size] 
// uncaught exception Size [size] 
254 
// raised at ctarget/ctarget.sml:47.1547.19 
// raised at ctarget/ctarget.sml:47.1547.19 
255 
//field#4(3)[] F = img ⊛ bspln5; 
//field#4(3)[] F = img ⊛ bspln5; 
256 

