Home My Page Projects Code Snippets Project Openings diderot

# SCM Repository

[diderot] View of /branches/charisee/src/compiler/high-il/normalize-ein.sml
 [diderot] / branches / charisee / src / compiler / high-il / normalize-ein.sml

# View of /branches/charisee/src/compiler/high-il/normalize-ein.sml

Tue Nov 4 21:58:11 2014 UTC (4 years, 10 months ago) by cchiw
File size: 12467 byte(s)
`field problem`
```structure NormalizeEin = struct

local

structure E = Ein
structure P=Printer
structure F=Filter
structure G=EpsHelpers

in

fun err str=raise Fail (String.concat["Ill-formed EIN Operator",str])
val testing=1

fun flatProd [e]=e
| flatProd e=E.Prod e

fun prodAppPartial(es,p1)=(case es
of []      => raise Fail "Empty App Partial"
| [e1]     => E.Apply(E.Partial p1,e1)
| (e1::e2) => let
val l= prodAppPartial(e2,p1)
val (_,e2')= F.mkProd[e1,l]
val (_,e1')=F.mkProd(e2@ [E.Apply(E.Partial p1, e1)])
in
end
(* end case *))

(*rewritten Sum*)
fun mkSum(c1,e1)=(case e1
of E.Conv _   => (0,E.Sum(c1,e1))
| E.Field _   => (0,E.Sum(c1,e1))
| E.Probe _   => (0,E.Sum(c1,e1))
| E.Apply _   => (0,E.Sum(c1,e1))
| E.Delta _   => (0,E.Sum(c1,e1))
| E.Epsilon _ => (0,E.Sum(c1,e1))
| E.Tensor _  => (0,E.Sum(c1,e1))
| E.Neg e2    => (1,E.Neg(E.Sum(c1,e2)))
| E.Sub (a,b) => (1,E.Sub(E.Sum(c1,a),E.Sum(c1,b)))
| E.Div (a,b) => (1,E.Div(E.Sum(c1,a),E.Sum(c1,b)))
| E.Lift e    => (1,E.Lift(E.Sum(c1,e)))
| E.Sum(c2,e2)=> (1,E.Sum(c1@c2,e2))
| E.Prod p     =>F.filterSca(c1,p)
| E.Const _   => err("Sum of Const")
| E.Partial _ => err("Sum of Partial")
| E.Krn _     => err("Krn used before expand")
| E.Value _   => err("Value used before expand")
| E.Img _     => err("Probe used before expand")
(*end case*))

(*rewritten Apply*)
fun mkapply(d1,e1)=(case e1
of E.Lift e   => (1,E.Const 0)
| E.Prod []   => err("Apply of empty product")
| E.Conv(v, alpha, h, d2)    =>let
val E.Partial d3=d1
in (1,E.Conv(v,alpha,h,d2@d3)) end
| E.Field _   => (0,E.Apply(d1,e1))
| E.Probe _   => (0,E.Apply(d1,e1)) (*FIX ME, Should be error actually apply of a tensor result*)
| E.Apply(E.Partial d2,e2)  => let
val E.Partial d3=d1
in (1,E.Apply(E.Partial(d3@d2),e2)) end
| E.Apply _   => err" Apply of non-Partial expression"
| E.Sum(c2,e2)=> (1,E.Sum(c2,E.Apply(d1,e2)))
| E.Neg e2    => (1,E.Neg(E.Apply(d1,e2)))
| E.Sub (a,b) => (1,E.Sub(E.Apply(d1,a),E.Apply(d1,b)))
| E.Div (g,b) => let
in
(case F.filterField[b]
of (_,[]) => (1,E.Div(E.Apply(d1,g),b)) (*Division by a real*)
| (pre,h) => let
val g'=E.Apply(d1,g)
val h'=E.Apply(d1,flatProd(h))
val num=E.Sub(E.Prod([g']@h),E.Prod[g,h'])
val denom=E.Prod(pre@h@h)
in (1,E.Div(num,denom))
end
(*end case*))
end

| E.Prod p =>let
val (pre, post)= F.filterField p
val E.Partial d3=d1
in F.mkProd(pre@[prodAppPartial(post,d3)])
end
| E.Const _   => err("Const without Lift")
| E.Tensor _  => err("Tensor without Lift")
| E.Delta _   => err("Apply of Delta")
| E.Epsilon _ => err("Apply of Eps")
| E.Partial _ => err("Apply of Partial")
| E.Krn _     => err("Krn used before expand")
| E.Value _   => err("Value used before expand")
| E.Img _     => err("Probe used before expand")
(*end case*))

(*rewritten probe*)
fun mkprobe(e1,x)=(case e1
of E.Lift e   => (1,e)
| E.Prod []   => err("Probe of empty product")
| E.Prod p    => (1,E.Prod (List.map (fn(a)=>E.Probe(a,x)) p))
| E.Apply _   => (0,E.Probe(e1,x))
| E.Conv _    => (0,E.Probe(e1,x))
| E.Field _   => (0,E.Probe(e1,x))
| E.Sum(c,e') => (1,E.Sum(c,E.Probe(e',x)))
| E.Sub (a,b) => (1,E.Sub(E.Probe(a,x),E.Probe(b,x)))
| E.Neg e'    => (1,E.Neg(E.Probe(e',x)))
| E.Div (a,b) => (1,E.Div(E.Probe(a,x),E.Probe(b,x)))
| E.Const _   => err("Const without Lift")
| E.Tensor _  => err("Tensor without Lift")
| E.Delta _   => err("Probe of Delta")
| E.Epsilon _ => err("Probe of Eps")
| E.Partial _ => err("Probe Partial")
| E.Probe _   => err("Probe of a Probe")
| E.Krn _     => err("Krn used before expand")
| E.Value _   => err("Value used before expand")
| E.Img _     => err("Probe used before expand")
(*end case*))

(*Apply normalize to each term in product list
or Apply normalize to tail of each list*)
fun normalize (Ein.EIN{params, index, body}) = let
val changed = ref false

fun rewriteBody body =(case body
of E.Const _    => body
| E.Tensor _    => body
| E.Field _     => body
| E.Delta _     => body
| E.Epsilon _   => body
| E.Conv _      => body
| E.Partial _   => body
| E.Krn _       => raise Fail"Krn before Expand"
| E.Img _       => raise Fail"Img before Expand"
| E.Value _     => raise Fail"Value before Expand"

(*************Algebraic Rewrites **************)
| E.Neg(E.Neg e)    => rewriteBody e
| E.Neg e           => E.Neg(rewriteBody e)
| E.Lift e          => E.Lift(rewriteBody e)
in if (change=1) then ( changed:=true;body') else body' end
| E.Sub(a, E.Field f)=> (changed:=true;E.Add[a, E.Neg(E.Field(f))])
| E.Sub (a,b)                   => E.Sub(rewriteBody a, rewriteBody b)
| E.Div(E.Div(a,b),E.Div(c,d))  => rewriteBody(E.Div(E.Prod[a,d],E.Prod[b,c]))
| E.Div(E.Div(a,b),c)           => rewriteBody (E.Div(a, E.Prod[b,c]))
| E.Div(a,E.Div(b,c))           => rewriteBody (E.Div(E.Prod[a,c],b))
| E.Div (a, b)                  => E.Div(rewriteBody a, rewriteBody b)

(**************Apply, Sum, Probe**************)
| E.Apply(E.Partial [],e)   => e
| E.Apply(E.Partial d1, e1) =>
let
val e2 = rewriteBody e1
val (c,e3)=mkapply(E.Partial d1,e2)
in (case c of 1=>(changed:=true;e3)| _ =>e3 (*end case*))
end
| E.Apply _                 => raise Fail" Not well-formed Apply expression"
| E.Sum([],e)               => (changed:=true;rewriteBody e)
| E.Sum(c,e)                => let
val (c,e')=mkSum(c,rewriteBody e)
in (case c of 0 => e'|_ => (changed:=true;e'))
end
| E.Probe(u,v)              =>
let
val (c',b')=mkprobe(rewriteBody u,rewriteBody v)
in (case c'
of 1=> (changed:=true;b')
|_=> b'
(*end case*))
end
(*************Product**************)
| E.Prod [] => raise Fail"missing elements in product"
| E.Prod [e1] => rewriteBody e1
(changed := true; E.Add(List.map (fn e=> E.Prod([e]@e3)) e2))
| E.Prod((E.Sub(e2,e3))::e4)=>
(changed :=true; E.Sub(E.Prod([e2]@e4), E.Prod([e3]@e4 )))
| E.Prod((E.Div(e2,e3))::e4)=> (changed :=true; E.Div(E.Prod([e2]@e4), e3 ))
(changed := true; E.Add(List.map (fn e=> E.Prod([e1,e]@e3)) e2))
| E.Prod(e1::E.Sub(e2,e3)::e4)=>
(changed :=true; E.Sub(E.Prod([e1,e2]@e4), E.Prod([e1,e3]@e4 )))

(*************Product EPS **************)

| E.Prod(E.Epsilon(i,j,k)::E.Apply(E.Partial d,e)::es)=>let
val change= G.matchEps(0,d,[],[i,j,k])
in case (change,es)
of (1,_) =>(changed:=true; E.Const 0)
| (_,[]) =>E.Prod[E.Epsilon(i,j,k),rewriteBody (E.Apply(E.Partial d,e))]
|(_,_)=> let
val a=rewriteBody(E.Prod([E.Apply(E.Partial d,e)]@ es))
val (_,b)=F.mkProd [E.Epsilon(i,j,k),a]
in b end
end
| E.Prod(E.Epsilon(i,j,k)::E.Conv(V,alpha, h, d)::es)=>let
val change= G.matchEps(0,d,[],[i,j,k])
in case (change,es)
of (1,_) =>(changed:=true; E.Const 0)
| (_,[]) =>E.Prod[E.Epsilon(i,j,k),E.Conv(V,alpha, h, d)]
| (_,_) =>let
val a=rewriteBody(E.Prod([E.Conv(V,alpha, h, d)]@ es))
val (_,b) = F.mkProd [E.Epsilon(i,j,k),a]
in b end
end

| E.Prod[(E.Epsilon(e1,e2,e3)), E.Tensor(_,[E.V i1,E.V i2])]=>
if(e2=i1 andalso e3=i2) then (changed :=true;E.Const(0))
else body

| E.Prod(E.Epsilon eps1::ps)=> (case (G.epsToDels(E.Epsilon eps1::ps))
of (1,e,[],_,_)      =>(changed:=true;e)(* Changed to Deltas *)
| (1,e,sx,_,_)      =>(changed:=true;E.Sum(sx,e))(* Changed to Deltas *)
| (_,_,_,_,[])   =>  body
| (_,_,_,epsAll,rest) => let
val p'=rewriteBody(E.Prod rest)
val(_,b)= F.mkProd(epsAll@[p'])
in b end
(*end case*))

| E.Prod(E.Sum(c1,E.Prod(E.Epsilon e1::es1))::E.Sum(c2,E.Prod(E.Epsilon e2::es2))::es) =>
(case G.epsToDels([E.Epsilon e1, E.Epsilon e2]@es1@es2@es)
of (1,e,sx,_,_)=> (changed:=true; E.Sum(c1@c2@sx,e))
| (_,_,_,_,_)=>let
val eA=rewriteBody(E.Sum(c1,E.Prod(E.Epsilon e1::es1)))
val eB=rewriteBody(E.Prod(E.Sum(c2,E.Prod(E.Epsilon e2::es2))::es))
val (_,e)=F.mkProd([eA,eB])
in e
end
(*end case*))

| E.Prod(E.Delta d::es)=>let
val (pre',eps, dels,post)= F.filterGreek(E.Delta d::es)
val (change,a)=G.reduceDelta(eps, dels, post)
in (case (change,a)
of (0, _)=> E.Prod [E.Delta d,rewriteBody(E.Prod es)]
| (_, E.Prod p)=>let
val (_, p') = F.mkProd p
in (changed:=true;p') end
| _ => (changed:=true;a )
(*end case*))
end

| E.Prod[e1,e2]=> let val (_,b)=F.mkProd[rewriteBody e1, rewriteBody e2] in b end
| E.Prod(e::es)=>let
val e'=rewriteBody e
val e2=rewriteBody(E.Prod es)
val(_,b)=(case e2
of E.Prod p'=> F.mkProd([e']@p')
|_=>F.mkProd [e',e2])
in b
end

(*end case*))

fun loop(body ,count) = let
val body' = rewriteBody body

in
if !changed
then let
val _= (case testing
of 1=> (print(String.concat["\nN =>",Int.toString(count),"--",P.printbody(body')]);1)
| _=> 1)
in
(changed := false ;loop(body',count+1))
end
else (body',count)
end

val (b,count) = loop(body,0)
val _ =(case testing
of 1 => (print(String.concat["\n out of normalize \n",P.printbody(b),"\n    Final CounterXX:",Int.toString(count),"\n\n"]);1)
| _=> 1
(*end case*))
in
(Ein.EIN{params=params, index=index, body=b},count)
end
end

end (* local *)```