Home My Page Projects Code Snippets Project Openings diderot
Summary Activity Tracker Tasks SCM

SCM Repository

[diderot] View of /branches/charisee/src/compiler/translate/translate-basis.sml
ViewVC logotype

View of /branches/charisee/src/compiler/translate/translate-basis.sml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1923 - (download) (annotate)
Sat Jun 23 12:02:18 2012 UTC (7 years, 4 months ago) by jhr
Original Path: trunk/src/compiler/translate/translate-basis.sml
File size: 9111 byte(s)
  ported changes from vis12 branch (C math functions)
(* translate-basis.sml
 *
 * COPYRIGHT (c) 2010 The Diderot Project (http://diderot-language.cs.uchicago.edu)
 * All rights reserved.
 *
 * Translation for basis operations in Simple AST to HighIL code
 *)

structure TranslateBasis : sig

  (* translate(lhs, f, mvs, args) translates the application of f (specialized
   * to the instantiated meta variables mvs) to a list of SSA assignments in
   * reverse order.
   *)
    val translate : (HighIL.var * Var.var * Types.meta_var list * HighIL.var list)
	  -> HighIL.assignment list

  end = struct

    structure BV = BasisVars
    structure IL = HighIL
    structure DstTy = HighILTypes
    structure Op = HighOps
    structure Ty = Types
    structure TU = TypeUtil
    structure MV = MetaVar
    structure VTbl = Var.Tbl

    fun pruneTy ty = (case TU.prune ty
           of (Ty.T_Var _) => raise Fail("unresolved type " ^ TU.toString ty)
            | ty => TranslateTy.tr ty
          (* end case *))

    fun pruneDim d = (case TU.pruneDim d
	   of (Ty.DimConst n) => n
	    | d => raise Fail("unresolved dimension " ^ TU.dimToString d)
	  (* end case *))

    fun pruneShape sv = (case TU.pruneShape(MV.toShape sv)
	   of Ty.Shape dd => DstTy.tensorTy(List.map pruneDim dd)
	    | shp => raise Fail("unresolved shape " ^ TU.shapeToString shp)
	  (* end case *))

    fun dimVarToTensor dv = DstTy.tensorTy[pruneDim(MV.toDim dv)]
    fun dimVarToMatrix dv = let
	  val d = pruneDim(MV.toDim dv)
	  in
	    DstTy.tensorTy[d, d]	(* square matrix type *)
	  end
    fun shapeVarToTensor sv = pruneShape sv

    fun assign (y, rator, xs) = [IL.ASSGN(y, IL.OP(rator, xs))]

    fun basisFn name (y, [], xs) = [IL.ASSGN(y, IL.APPLY(name, xs))]

    fun simpleOp rator (y, [], xs) = assign (y, rator, xs)

    fun tensorOp rator (y, [sv], xs) = assign (y, rator(shapeVarToTensor sv), xs)

    fun vectorOp rator (y, [dv], xs) = assign (y, rator(dimVarToTensor dv), xs)

    fun kernel h (y, [], []) = assign(y, Op.Kernel(h, 0), [])

  (* utility functions for synthesizing eigenvector/eigenvalue code *)
    fun eigenVec (rator, dim) = let
          val ty = DstTy.SeqTy(DstTy.realTy, dim)
          in
            fn (y, _, [m]) => let
                val v = IL.Var.new("evals", ty)
                in
                  [IL.MASSGN([v, y], rator, [m])]
                end
          end
    fun eigenVal (rator, dim) = let
          val ty = DstTy.SeqTy(DstTy.vecTy dim, dim)
          in
            fn (y, _, [m]) => let
                val v = IL.Var.new("evecs", ty)
                in
                  [IL.MASSGN([y, v], rator, [m])]
                end
          end

  (* build a table that maps Basis variables to their translation functions *)
    val tbl : ((IL.var * Ty.meta_var list * IL.var list) -> IL.assignment list) VTbl.hash_table = let
	  val tbl = VTbl.mkTable (128, Fail "Translate table")
	  val insert = VTbl.insert tbl
	  in
	    List.app insert [
		(BV.lt_ii,		simpleOp(Op.LT DstTy.IntTy)),
		(BV.lt_rr,		simpleOp(Op.LT DstTy.realTy)),
		(BV.lte_ii,		simpleOp(Op.LTE DstTy.IntTy)),
		(BV.lte_rr,		simpleOp(Op.LTE DstTy.realTy)),
		(BV.gte_ii,		simpleOp(Op.GTE DstTy.IntTy)),
		(BV.gte_rr,		simpleOp(Op.GTE(DstTy.realTy))),
		(BV.gt_ii,		simpleOp(Op.GT DstTy.IntTy)),
		(BV.gt_rr,		simpleOp(Op.GT(DstTy.realTy))),
		(BV.equ_bb,		simpleOp(Op.EQ DstTy.BoolTy)),
		(BV.equ_ii,		simpleOp(Op.EQ DstTy.IntTy)),
		(BV.equ_ss,		simpleOp(Op.EQ DstTy.StringTy)),
		(BV.equ_rr,		simpleOp(Op.EQ(DstTy.realTy))),
		(BV.neq_bb,		simpleOp(Op.NEQ DstTy.BoolTy)),
		(BV.neq_ii,		simpleOp(Op.NEQ DstTy.IntTy)),
		(BV.neq_ss,		simpleOp(Op.NEQ DstTy.StringTy)),
		(BV.neq_rr,		simpleOp(Op.NEQ(DstTy.realTy))),
		(BV.add_ii,		simpleOp(Op.Add DstTy.IntTy)),
		(BV.add_tt,		tensorOp Op.Add),
		(BV.add_ff,		fn (y, _, [f, g]) => assign(y, Op.AddField, [f, g])),
		(BV.sub_ii,		simpleOp(Op.Sub DstTy.IntTy)),
		(BV.sub_tt,		tensorOp Op.Sub),
		(BV.sub_ff,		fn (y, _, [f, g]) => assign(y, Op.SubField, [f, g])),
		(BV.mul_ii,		simpleOp(Op.Mul DstTy.IntTy)),
		(BV.mul_rr,		simpleOp(Op.Mul(DstTy.realTy))),
		(BV.mul_rt,		tensorOp Op.Scale),
		(BV.mul_tr,		fn (y, sv, [t, r]) => tensorOp Op.Scale (y, sv, [r, t])),
		(BV.mul_rf,		fn (y, _, [s, f]) => assign(y, Op.ScaleField, [s, f])),
		(BV.mul_fr,		fn (y, _, [f, s]) => assign(y, Op.ScaleField, [s, f])),
		(BV.div_ii,		simpleOp(Op.Div DstTy.IntTy)),
		(BV.div_rr,		simpleOp(Op.Div DstTy.realTy)),
		(BV.div_tr,		fn (y, [sv], [x, s]) => let
					  val one = IL.Var.new("one", DstTy.realTy)
					  val s' = IL.Var.new("sInv", DstTy.realTy)
					  in [
					    IL.ASSGN(one, IL.LIT(Literal.Float(FloatLit.one))),
					    IL.ASSGN(s', IL.OP(Op.Div DstTy.realTy, [one, s])),
					    IL.ASSGN(y, IL.OP(Op.Scale(shapeVarToTensor sv), [s', x]))
					  ] end),
		(BV.div_fr,		fn (y, _, [f, s]) => let
					  val one = IL.Var.new("one", DstTy.realTy)
					  val s' = IL.Var.new("sInv", DstTy.realTy)
					  in [
					    IL.ASSGN(one, IL.LIT(Literal.Float(FloatLit.one))),
					    IL.ASSGN(s', IL.OP(Op.Div DstTy.realTy, [one, s])),
					    IL.ASSGN(y, IL.OP(Op.ScaleField, [s', f]))
					  ] end),
		(BV.exp_ri,		simpleOp(Op.Power)),
		(BV.exp_rr,		basisFn MathFuns.pow),
		(BV.convolve_vk,	fn (y, [_, dv, _], xs) =>
					  assign(y, Op.Field(pruneDim(MV.toDim dv)), xs)),
		(BV.convolve_kv,	fn (y, [_, dv, _], [k, v]) =>
					  assign(y, Op.Field(pruneDim(MV.toDim dv)), [v, k])),
		(BV.neg_i,		simpleOp(Op.Neg DstTy.IntTy)),
		(BV.neg_t,		tensorOp Op.Neg),
		(BV.neg_f,		fn (y, _, xs) => assign(y, Op.NegField, xs)),
		(BV.op_probe,		fn (y, [_, dv, sv], xs) =>
					  assign(y, Op.Probe(dimVarToTensor dv, shapeVarToTensor sv), xs)),
		(BV.op_D,		fn (y, _, xs) => assign(y, Op.DiffField, xs)),
		(BV.op_Dotimes,		fn (y, _, xs) => assign(y, Op.DiffField, xs)),
		(BV.op_norm,		fn (y, [sv], xs) => (case shapeVarToTensor sv
					   of DstTy.TensorTy[] => assign(y, Op.Abs DstTy.realTy, xs)
					    | ty => assign(y, Op.Norm ty, xs)
					  (* end case *))),
		(BV.op_not,		simpleOp Op.Not),
		(BV.op_cross,		simpleOp Op.Cross),
		(BV.op_outer,		fn (y, [dv1, dv2], xs) => let
					  val d1 = pruneDim(MV.toDim dv1)
					  val d2 = pruneDim(MV.toDim dv2)
					  in
					    assign (y, Op.Outer(DstTy.tensorTy[d1, d2]), xs)
					  end),
		(BV.op_inner,		fn (y, [sh1, sh2, _], xs) => let
					  val ty1 as DstTy.TensorTy dd1 = pruneShape sh1
					  val ty2 as DstTy.TensorTy dd2 = pruneShape sh2
					  val rator = (case (dd1, dd2)
						 of ([d], [d']) => Op.Dot ty1
						  | ([d1], [d1', d2]) => Op.MulVecMat ty2
						  | ([d1, d2], [d2']) => Op.MulMatVec ty1
						  | ([d1, d2], [d2', d3]) => Op.MulMatMat(ty1, ty2)
						  | _ => raise Fail "unsupported inner-product type"
						(* end case *))
					  in
					    assign (y, rator, xs)
					  end),
		(BV.fn_inside,		fn (y, [_, dv, _], xs) =>
					  assign(y, Op.Inside(pruneDim(MV.toDim dv)), xs)),
		(BV.clamp_rrr,		simpleOp (Op.Clamp DstTy.realTy)),
		(BV.clamp_vvv,		vectorOp Op.Clamp),
		(BV.lerp3,		tensorOp Op.Lerp),
		(BV.lerp5,		fn (y, [sv], [a, b, x0, x, x1]) => let
					  val t1 = IL.Var.new("t1", DstTy.realTy)
					  val t2 = IL.Var.new("t2", DstTy.realTy)
					  val t3 = IL.Var.new("t3", DstTy.realTy)
					  in [
					    IL.ASSGN(t1, IL.OP(Op.Sub DstTy.realTy, [x, x0])),
					    IL.ASSGN(t2, IL.OP(Op.Sub DstTy.realTy, [x1, x0])),
					    IL.ASSGN(t3, IL.OP(Op.Div DstTy.realTy, [t1, t2])),
					    IL.ASSGN(y,  IL.OP(Op.Lerp(shapeVarToTensor sv), [a, b, t3]))
					  ] end),
		(BV.evals2x2,		eigenVal (Op.Eigen2x2, 2)),
		(BV.evals3x3,		eigenVal (Op.Eigen3x3, 3)),
		(BV.evecs2x2,		eigenVec (Op.Eigen2x2, 2)),
		(BV.evecs3x3,		eigenVec (Op.Eigen3x3, 3)),
		(BV.fn_max,		simpleOp Op.Max),
		(BV.fn_min,		simpleOp Op.Min),
		(BV.fn_modulate,	vectorOp Op.Mul),
		(BV.fn_normalize,	vectorOp Op.Normalize),
		(BV.fn_principleEvec,	vectorOp Op.PrincipleEvec),
		(BV.fn_trace,		fn (y, [dv], xs) => assign(y, Op.Trace(dimVarToMatrix dv), xs)),
		(BV.kn_bspln3,		kernel Kernel.bspln3),
		(BV.kn_bspln5,		kernel Kernel.bspln5),
		(BV.kn_ctmr,		kernel Kernel.ctmr),
		(BV.kn_c2ctmr,		kernel Kernel.ctmr),
		(BV.kn_tent,		kernel Kernel.tent),
		(BV.kn_c1tent,          kernel Kernel.tent),
		(BV.i2r,		simpleOp Op.IntToReal),
		(BV.identity,		fn (y, [dv], []) =>
					  assign(y, Op.Identity(pruneDim(MV.toDim dv)), [])),
		(BV.zero,		fn (y, [sv], []) =>
					  assign(y, Op.Zero(shapeVarToTensor sv), [])),
                (BV.subscript,          fn (y, [tv, dv], args) =>
                                          assign(y,
                                            Op.SeqSub(DstTy.SeqTy(pruneTy(MV.toType tv), pruneDim(MV.toDim dv))),
                                            args))
	      ];
	  (* add C math functions *)
	    List.app (fn (n, x) => insert(x, basisFn n)) BV.mathFns;
	    tbl
	  end

    fun translate (y, f, mvs, xs) = (case VTbl.find tbl f
	   of SOME transFn => transFn(y, mvs, xs)
	    | NONE => raise Fail("TranslateBasis.translate: unknown basis function " ^ Var.uniqueNameOf f)
	  (* end case *))
handle ex => (print(concat["translate (", IL.Var.toString y, ", ",
Var.uniqueNameOf f, ", ...)\n"]); raise ex)

  end

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0