Home My Page Projects Code Snippets Project Openings diderot
Summary Activity Tracker Tasks SCM

SCM Repository

[diderot] View of /branches/charisee/src/compiler/translate/translate-basis.sml
ViewVC logotype

View of /branches/charisee/src/compiler/translate/translate-basis.sml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2386 - (download) (annotate)
Sat Jun 15 18:34:05 2013 UTC (6 years, 4 months ago) by cchiw
File size: 16869 byte(s)
few changes 
(* translate-basis.sml
 *
 * COPYRIGHT (c) 2010 The Diderot Project (http://diderot-language.cs.uchicago.edu)
 * All rights reserved.
 *
 * Translation for basis operations in Simple AST to HighIL code
 *)

structure TranslateBasis : sig

  (* translate(lhs, f, mvs, args) translates the application of f (specialized
   * to the instantiated meta variables mvs) to a list of SSA assignments in
   * reverse order.
   *)
    val translate : (HighIL.var * Var.var * Types.meta_var list * HighIL.var list)
          -> HighIL.assignment list

  end = struct

    structure BV = BasisVars
    structure IL = HighIL
    structure DstTy = HighILTypes
    structure Op = HighOps
    structure Ty = Types
    structure TU = TypeUtil
    structure MV = MetaVar
    structure VTbl = Var.Tbl

    structure EinOp= Operators
    structure R=Rewrite
    structure N=Normalize

    fun pruneTy tv = (case TU.prune(MV.toType tv)
           of (ty as Ty.T_Var _) => raise Fail("unresolved type " ^ TU.toString ty)
            | ty => TranslateTy.tr ty
          (* end case *))

    fun pruneDim d = (case TU.pruneDim d
           of (Ty.DimConst n) => n
            | d => raise Fail("unresolved dimension " ^ TU.dimToString d)
          (* end case *))

    fun pruneShape sv = (case TU.pruneShape(MV.toShape sv)
           of Ty.Shape dd => DstTy.tensorTy(List.map pruneDim dd)
            | shp => raise Fail("unresolved shape " ^ TU.shapeToString shp)
          (* end case *))

    fun dimVarToInt dv = pruneDim(MV.toDim dv)
    fun dimVarToTensor dv = DstTy.tensorTy[dimVarToInt dv]
    fun dimVarToMatrix dv = let
          val d = dimVarToInt dv
          in
            DstTy.tensorTy[d, d]        (* square matrix type *)
          end
    fun shapeVarToTensor sv = pruneShape sv

    fun assign (y, rator, xs) = [IL.ASSGN(y, IL.OP(rator, xs))]

    fun basisFn name (y, [], xs) = [IL.ASSGN(y, IL.APPLY(name, xs))]

    fun simpleOp rator (y, [], xs) = assign (y, rator, xs)

    fun tensorOp rator (y, [sv], xs) = assign (y, rator(shapeVarToTensor sv), xs)

    fun vectorOp rator (y, [dv], xs) = assign (y, rator(dimVarToTensor dv), xs)

    fun kernel h (y, [], []) = assign(y, Op.Kernel(h, 0), [])

  (* utility functions for synthesizing eigenvector/eigenvalue code *)
    fun eigenVec (rator, dim) = let
          val ty = DstTy.SeqTy(DstTy.realTy, dim)
          in
            fn (y, _, [m]) => let
                val v = IL.Var.new("evals", ty)
                in
                  [IL.MASSGN([v, y], rator, [m])]
                end
          end
    fun eigenVal (rator, dim) = let
          val ty = DstTy.SeqTy(DstTy.vecTy dim, dim)
          in
            fn (y, _, [m]) => let
                val v = IL.Var.new("evecs", ty)
                in
                  [IL.MASSGN([y, v], rator, [m])]
                end
          end

        fun createTenEin(operator, sv)=let shape=shapeVarToTensor
            in S.transform(operator,[len(shape), shape]) end
        fun createFldEin(operator, f)=S.transform(operator,[])


     fun assignEin (y, rator, xs) = [IL.ASSGN(y, IL.EINAPP(R.evalEinApp(rator, xs)))]
    fun simpleEinOp  rator(y, [],xs)= assignEin (y,S.transform(rator,[]), xs)
    fun tensorEinOp rator(y,[sv],xs)= assignEin(y,createTenEin(rator,sv),xs)

  (* build a table that maps Basis variables to their translation functions *)
    val tbl : ((IL.var * Ty.meta_var list * IL.var list) -> IL.assignment list) VTbl.hash_table = let
          val tbl = VTbl.mkTable (128, Fail "Translate table")
          val insert = VTbl.insert tbl
          in
            List.app insert [
                (BV.lt_ii,              simpleOp(Op.LT DstTy.IntTy)),
                (BV.lt_rr,              simpleOp(Op.LT DstTy.realTy)),
                (BV.lte_ii,             simpleOp(Op.LTE DstTy.IntTy)),
                (BV.lte_rr,             simpleOp(Op.LTE DstTy.realTy)),
                (BV.gte_ii,             simpleOp(Op.GTE DstTy.IntTy)),
                (BV.gte_rr,             simpleOp(Op.GTE(DstTy.realTy))),
                (BV.gt_ii,              simpleOp(Op.GT DstTy.IntTy)),
                (BV.gt_rr,              simpleOp(Op.GT(DstTy.realTy))),
                (BV.equ_bb,             simpleOp(Op.EQ DstTy.BoolTy)),
                (BV.equ_ii,             simpleOp(Op.EQ DstTy.IntTy)),
                (BV.equ_ss,             simpleOp(Op.EQ DstTy.StringTy)),
                (BV.equ_rr,             simpleOp(Op.EQ(DstTy.realTy))),
                (BV.neq_bb,             simpleOp(Op.NEQ DstTy.BoolTy)),
                (BV.neq_ii,             simpleOp(Op.NEQ DstTy.IntTy)),
                (BV.neq_ss,             simpleOp(Op.NEQ DstTy.StringTy)),
                (BV.neq_rr,             simpleOp(Op.NEQ(DstTy.realTy))),

                    (* Changed*)

                (BV.add_ii,             simpleEinOp(EinOp.addScalars)),
                (BV.add_tt,             tensorEinOp(EinOp.addTensors)),

                    
                (BV.add_ff,             fn (y, _, [f, g])
                                            =>assignEin(y, createFldEin(EinOp.addField,f ), [f, g])),
                (BV.add_fr,             fn (y, _, [f, s])
                                            => assignEin(y, createFldEin(EinOp.addTenField,f ), [f, s])),
                (BV.add_rf,             fn (y, _, [s, f])
                                            => assignEin(y, createFldEin(EinOp.addTenField,f ), [f, s])),

                (BV.sub_ii,             simpleEinOp(EinOp.subScalars)), (*DstTy.IntTy*)
                (BV.sub_tt,             tensorEinOp(EinOp.subTensor)),
                (BV.sub_ff,             fn (y, _, [f, g])
                                            => assignEin(y, createFldEin(EinOp.subField,f), [f, g])),

                (* UnChanged*) 
                (BV.sub_fr,             fn (y, _, [f, s]) => let
                                          val s' = IL.Var.copy s
                                          in [
                                            IL.ASSGN(s', IL.OP(Op.Neg DstTy.realTy, [s])),
                                            IL.ASSGN(y, IL.OP(Op.OffsetField, [f, s']))
                                          ] end),
                        
                (BV.sub_rf,             fn (y, _, [s, f]) => let
                                          val f' = IL.Var.copy f
                                          in [
                                            IL.ASSGN(f', IL.OP(Op.NegField, [f])),
                                            IL.ASSGN(y, IL.OP(Op.OffsetField, [f', s]))
                                          ] end),
                         (* Changed*)            
                (BV.mul_ii,             simpleEinOp(EinOp.scalarxscalar)), 
                (BV.mul_rr,             simpleEinOp(EinOp.scalarxscalar)),
                (BV.mul_rt,             tensorEinOp(EinOp.scaleTensor)),    (*tensorOp Op.Scale),*)

                (BV.mul_tr,             fn (y, sv, [t, r])
                                            =>assignEin(y,createTenEin(EinOp.scaleTensor, sv), [r,t])
                                          

                (BV.mul_rf,             fn (y, _, [s, f])
                                            => assignEin(y, createFldEin(EinOp.scaleField,f), [s, f])),
                (BV.mul_fr,             fn (y, _, [f, s])
                                            => assignEin(y, createFldEin(EinOp.scaleField,f), [s, f])),

                         (* UnChanged*)

                (BV.div_ii,             simpleOp(Op.Div DstTy.IntTy)),
                (BV.div_rr,             simpleOp(Op.Div DstTy.realTy)),
                (BV.div_tr,             fn (y, [sv], [x, s]) => let
                                          val one = IL.Var.new("one", DstTy.realTy)
                                          val s' = IL.Var.new("sInv", DstTy.realTy)
                                          in [
                                            IL.ASSGN(one, IL.LIT(Literal.Float(FloatLit.one))),
                                            IL.ASSGN(s', IL.OP(Op.Div DstTy.realTy, [one, s])),
                                            IL.ASSGN(y, IL.OP(Op.Scale(shapeVarToTensor sv), [s', x]))
                                          ] end),
                (BV.div_fr,             fn (y, _, [f, s]) => let
                                          val one = IL.Var.new("one", DstTy.realTy)
                                          val s' = IL.Var.new("sInv", DstTy.realTy)
                                          in [
                                            IL.ASSGN(one, IL.LIT(Literal.Float(FloatLit.one))),
                                            IL.ASSGN(s', IL.OP(Op.Div DstTy.realTy, [one, s])),
                                            IL.ASSGN(y, IL.OP(Op.ScaleField, [s', f]))
                                          ] end),
                (BV.exp_ri,             simpleOp(Op.Power)),
                (BV.exp_rr,             basisFn MathFuns.pow),

                        (* Changed*)
                (*Note curl is in Ein and does not need to normalize.*)
                (BV.curl2D,             fn (y, _, xs) => assignEin(y, EinOp.Curl2d, xs)),
                (BV.curl3D,             fn (y, _, xs) => assignEin(y, EinOp.Curl3d, xs)),


                         (* UnChanged*)
                (BV.convolve_vk,        fn (y, [_, dv, _], xs) =>
                                          assign(y, Op.Field(pruneDim(MV.toDim dv)), xs)),
                (BV.convolve_kv,        fn (y, [_, dv, _], [k, v]) =>
                                          assign(y, Op.Field(pruneDim(MV.toDim dv)), [v, k])),


                (BV.neg_i,              simpleOp(Op.Neg DstTy.IntTy)),
                (BV.neg_t,              tensorOp Op.Neg),
                (BV.neg_f,              fn (y, _, xs) => assign(y, Op.NegField, xs)),
                (BV.op_probe,           fn (y, [_, dv, sv], xs) =>
                                          assign(y, Op.Probe(dimVarToTensor dv, shapeVarToTensor sv), xs)),

                         (* Changed*)
                (*Um what do I give as the argument to Normalize?*)
                (BV.op_D,               fn (y, _, xs) => assignEin(y, createFldEin(EinOp.Grad,xs), xs)),
                (BV.op_Dotimes,         fn (y, _, xs) => assignEin(y, createFldEin(EinOp.Divergence,xs), xs)),

                         (* UnChanged*)
                (BV.op_norm,            fn (y, [sv], xs) => (case shapeVarToTensor sv
                                           of DstTy.TensorTy[] => assign(y, Op.Abs DstTy.realTy, xs)
                                            | ty => assign(y, Op.Norm ty, xs)
                                          (* end case *))),
                (BV.op_not,             simpleOp Op.Not),

                         (* Changed*)
                (BV.op_cross,           fn(y, _ , xs )=> assignEin(y,EinOp.crossProductE ,xs)
                (BV.op_outer,           fn (y, [dv1, dv2], xs) => let
                                          val d1 = pruneDim(MV.toDim dv1)
                                          val d2 = pruneDim(MV.toDim dv2)
                                          in assignEin( y, S.transform(EinOp.outerProduct,[(length(d1),d1), (length(d2),d2)]),xs)
                                          end
                                            (*Here, d1, d2 is an int, but we want a list.*)

                (* Assuming dd1, ddd2 are lists of dimensions*)
                (BV.op_inner,        fn (y, [sh1, sh2, _], xs) => let
                                          val ty1 as DstTy.TensorTy dd1 = pruneShape sh1
                                          val ty2 as DstTy.TensorTy dd2 = pruneShape sh2
                                          val ilist=  [(length(dd1)-1, List.take(dd1, length(dd1)-1) ) ,
                                                ( length(dd2)-1, tl(dd2)),
                                                ( 0, [hd(dd2)]) ]
                                          in assignEin(y, S.tranform(EinOp.innerProduct, ilist),xs) end),


                (BV.op_colon,         fn (y, [sh1, sh2, _], xs) => let
                                          val ty1 as DstTy.TensorTy dd1 = pruneShape sh1
                                          val ty2 as DstTy.TensorTy dd2 = pruneShape sh2
                                          val ilist=    [ (length(dd1)-2 ,  List.take(q, length(q)-2)) ,
                                                ( length(dd2)-2 , tl(tl(dd2))),
                                                (_, List.take(dd2,2))]
                                         in  assignEin(y, S.transform(EinOp.doubleDot, ilist),xs) end),


                            (* UnChanged*)
                (BV.fn_inside,          fn (y, [_, dv, _], xs) =>
                                          assign(y, Op.Inside(pruneDim(MV.toDim dv)), xs)),
                (BV.clamp_rrr,          simpleOp (Op.Clamp DstTy.realTy)),
                (BV.clamp_vvv,          vectorOp Op.Clamp),
                (BV.lerp3,              tensorOp Op.Lerp),
                (BV.lerp5,              fn (y, [sv], [a, b, x0, x, x1]) => let
                                          val t1 = IL.Var.new("t1", DstTy.realTy)
                                          val t2 = IL.Var.new("t2", DstTy.realTy)
                                          val t3 = IL.Var.new("t3", DstTy.realTy)
                                          in [
                                            IL.ASSGN(t1, IL.OP(Op.Sub DstTy.realTy, [x, x0])),
                                            IL.ASSGN(t2, IL.OP(Op.Sub DstTy.realTy, [x1, x0])),
                                            IL.ASSGN(t3, IL.OP(Op.Div DstTy.realTy, [t1, t2])),
                                            IL.ASSGN(y,  IL.OP(Op.Lerp(shapeVarToTensor sv), [a, b, t3]))
                                          ] end),
                (BV.evals2x2,           eigenVal (Op.Eigen2x2, 2)),
                (BV.evals3x3,           eigenVal (Op.Eigen3x3, 3)),
                (BV.evecs2x2,           eigenVec (Op.Eigen2x2, 2)),
                (BV.evecs3x3,           eigenVec (Op.Eigen3x3, 3)),
                (BV.fn_max,             simpleOp Op.Max),
                (BV.fn_min,             simpleOp Op.Min),
                (BV.fn_modulate,        vectorOp Op.Mul),
                (BV.fn_normalize,       vectorOp Op.Normalize),
                (BV.fn_principleEvec,   vectorOp Op.PrincipleEvec),

                        (* Changed*)
                (BV.fn_trace,           fn (y, [dv], xs) => (let
                         val i=pruneDim(MV.toDim dv)  (* (dimVarToMatrix dv)*)
                        (*we need i to be the dimension n of an n xn matrix*)
                        in  assignEin(y,S.transform(EinOp.trace, [1,i]),xs)  end)

                        (* UnChanged*)
                (BV.fn_transpose,	fn (y, [dv1, dv2], xs) =>
					  assign(y, Op.Transpose(dimVarToInt dv1, dimVarToInt dv2), xs)),
                (BV.kn_bspln3,          kernel Kernel.bspln3),
                (BV.kn_bspln5,          kernel Kernel.bspln5),
                (BV.kn_ctmr,            kernel Kernel.ctmr),
                (BV.kn_c2ctmr,          kernel Kernel.ctmr),
                (BV.kn_c4hexic,         kernel Kernel.c4hexic),
                (BV.kn_tent,            kernel Kernel.tent),
                (BV.kn_c1tent,          kernel Kernel.tent),
                (BV.i2r,                simpleOp Op.IntToReal),

                        (* Changed*)
                (BV.identity,           fn (y, [dv], []) =>(let
                                        val i=pruneDim(MV.toDim dv)
                                        (*we need i to be the dimension n of an n xn matrix*)
                                        in  assignEin(y, S.transform(EinOp.identity,[(1,i),(1,i)]),[]) end)),
                                     
                        (* UnChanged*)
                (BV.zero,               fn (y, [sv], []) =>
                                          assign(y, Op.Zero(shapeVarToTensor sv), [])),
                (BV.subscript,          fn (y, [tv, dv], args) =>
                                          assign(y,
                                            Op.SeqSub(DstTy.SeqTy(pruneTy tv, pruneDim(MV.toDim dv))),
                                            args))
              ];
          (* add C math functions *)
            List.app (fn (n, x) => insert(x, basisFn n)) BV.mathFns;
            tbl
          end

    fun translate (y, f, mvs, xs) = (case VTbl.find tbl f
           of SOME transFn => transFn(y, mvs, xs)
            | NONE => raise Fail("TranslateBasis.translate: unknown basis function " ^ Var.uniqueNameOf f)
          (* end case *))
handle ex => (print(concat["translate (", IL.Var.toString y, ", ",
Var.uniqueNameOf f, ", ...)\n"]); raise ex)

  end

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0