Home My Page Projects Code Snippets Project Openings diderot

# SCM Repository

[diderot] View of /branches/charisee_dev/src/compiler/high-to-mid/split.sml
 [diderot] / branches / charisee_dev / src / compiler / high-to-mid / split.sml

# View of /branches/charisee_dev/src/compiler/high-to-mid/split.sml

Mon Mar 9 15:52:22 2015 UTC (4 years, 5 months ago) by cchiw
Original Path: branches/charisee/src/compiler/high-to-mid/split.sml
File size: 16677 byte(s)
general outer product
(* Currently under construction
*
* COPYRIGHT (c) 2012 The Diderot Project (http://diderot-language.cs.uchicago.edu)
*)

(*
During the transition from high-IL to mid-IL, complicated EIN expressions are split into simpler ones in order to better identify methods for code generation and common subexpressions. Combining EIN operators in the optimization phase can lead to large and complicated EIN operators. A general code generator would need to expand every operation to work on scalars, which could miss the opportunity for vectorization and lead to poor code generation. Instead, every EIN operator is split into a set of simple EIN operators.  Each EIN expression then only has one operation working on  constants, tensors, deltas, epsilons, images and kernels.

(1) When the outer EIN operator is $\in {--, +, -, *, /, \sum}$ then for each subexpression analyze to see if they need to be rewritten.

(1a.) When a subexpression is a field expression $\circledast,\nabla$ then it becomes 0. When it is another operation ${@ --, +, -, *, /, \sum}$ then we lift that subexpression and create a new EIN operator. We replace the subexpression with a tensor expression that represent it's size.

(1b) Call cleanIndex.sml to clean the indices in the subexpression, and get the shape for the tensor replacement.

(1c) Call cleanParams.sml to clean the params in the subexpression.\\
*)

structure Split = struct

local

structure E = Ein
structure DstIL = MidIL
structure DstTy = MidILTypes
structure DstV = DstIL.Var
structure P=Printer
structure cleanP=cleanParams
structure cleanI=cleanIndex
structure handleE=handleEin

in

val testing=0
fun setEin(params,index,body)=Ein.EIN{params=params, index=index, body=body}
fun assignEinApp(y,params,index,body,args)= (y,DstIL.EINAPP(setEin(params,index,body),args))
val einappzero=DstIL.EINAPP(setEin([],[],E.Const 0),[])
fun setEinZero y=  (y,einappzero)
fun cleanParams e =cleanP.cleanParams e
fun cleanIndex e =cleanI.cleanIndex e
fun printEINAPP e=MidToString.printEINAPP e
fun isZero e=handleE.isZero e
fun sweep e=handleE.sweep e
fun itos i =Int.toString i
fun filterSca e=Filter.filterSca e
fun err str=raise Fail str
val cnt = ref 0
fun genName prefix = let
val n = !cnt
in
cnt := n+1;
String.concat[prefix, "_", Int.toString n]
end
fun testp n=(case testing
of 0=> 1
| _ =>(print(String.concat n);1)
(*end case*))

(* lift:ein_app*params*index*sum_id*args-> (ein_exp* params*args*code)
*lifts expression and returns replacement tensor
* cleans the index and params of subexpression
*creates new param and replacement tensor for the original ein_exp
*)
fun lift(name,e,params,index,sx,args)=let

val (tshape,sizes,body)=cleanIndex(e,index,sx)
val id=length(params)
val Rparams=params@[E.TEN(1,sizes)]
val Re=E.Tensor(id,tshape)
val M  = DstV.new (genName (name^"_l_"^itos id), DstTy.TensorTy sizes)
val Rargs=args@[M]
val einapp=cleanParams(M,body,Rparams,sizes,Rargs)

in
(Re,Rparams,Rargs,[einapp])
end

(* isOp: ein->int
* checks to see if this sub-expression is pulled out or split form original
* 0-becomes zero,1-remains the same, 2-operator
*)
fun isOp e =(case e
of E.Field _  => 0
| E.Conv _    => 0
| E.Apply _   => 0
| E.Lift _    => 0
| E.Neg _     => 1
| E.Sqrt _    => 1
| E.PowInt _    => 1
| E.PowReal _    => 1
| E.Sub _     => 1
| E.Prod _    => 1
| E.Div _     => 1
| E.Sum _     => 1
| E.Probe _   => 1
| E.Partial _ => err(" Partial used after normalize")
| E.Krn _     => err("Krn used before expand")
| E.Value _   => err("Value used before expand")
| E.Img _     => err("Probe used before expand")
| _           => 2
(*end case*))

(* rewriteOp:ein_exp*params*index*args-> ein_exp*params*args*code
* If e1 an op then call lift() to replace it
* Otherwise rewrite to 0 or it remains the same
*)
fun rewriteOp(name,e1,params,index,sx,args)=(case (isOp e1)
of  0   => (E.Const 0,params,args,[])
| 2     => (e1,params,args,[])
| _     =>   lift(name,e1,params,index,sx,args)
(*end*))

(* rewriteOps:ein_exp list*params*index*sum_id list*mid-il vars
-> ein_exp list*params*args*code
* calls rewriteOp on ein_exp list
*)
fun rewriteOps(name,list1,params,index,sx,args)=let
fun m([],rest,params,args,code)=(rest,params,args,code)
| m(e1::es,rest,params,args,code)=let

val (e1',params',args',code')= rewriteOp(name,e1,params,index,sx,args)
in
m(es,rest@[e1'],params',args',code@code')
end
in
m(list1,[],params,args,[])
end

(*rewriteOrig: var* ein_exp* params*index list*mid-il vars
When the operation is zero then we return a real.
-Moved is Zero to before split.
*)
fun rewriteOrig(y,body,params,index,sx,args) =(case (isZero body)
of 1=>  setEinZero y
| _ => cleanParams(y,body,params,index,args)
(*end case*))

(* handleNeg:var*ein_exp *params*index*args-> (var*einap)*code
* calls rewriteOp() lift  on ein_exp
*)
fun handleNeg(y,e1,params,index,args)=let
val (e1',params',args',code)=  rewriteOp("neg", e1,params,index,[],args)
val body =E.Neg e1'
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handleSqrt:var*ein_exp *params*index*args-> (var*einap)*code
* calls rewriteOp() lift  on ein_exp
*)
fun handleSqrt(y,e1,params,index,args)=let
val (e1',params',args',code)=  rewriteOp("sqrt", e1,params,index,[],args)
val body =E.Sqrt e1'
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handlePowInt:var*ein_exp *params*index*args-> (var*einap)*code
* calls rewriteOp() lift  on ein_exp
*)
fun handlePowInt(y,(e1,n1),params,index,args)=let
val (e1',params',args',code)=  rewriteOp("powint", e1,params,index,[],args)
val body =E.PowInt(e1',n1)
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handlePowReal:var*ein_exp *params*index*args-> (var*einap)*code
* calls rewriteOp() lift  on ein_exp
*)
fun handlePowReal(y,(e1,n1),params,index,args)=let
val (e1',params',args',code)=  rewriteOp("powreal", e1,params,index,[],args)
val body =E.PowReal(e1',n1)
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handleSub:var*ein_exp*ein_exp *params*index*args-> (var*einap)*code
* calls rewriteOps() lift  on ein_exp
*)
fun handleSub(y,e1,e2,params,index,args)=let
val ([e1',e2'],params',args',code)=  rewriteOps("subt",[e1,e2],params,index,[],args)
val body =E.Sub(e1',e2')
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handleDiv:var*ein_exp *ein_exp*params*index*args-> (var*einap)*code
* calls rewriteOp() lift  on ein_exp
*)
fun handleDiv(y,e1,e2,params,index,args)=let
val (e1',params1',args1',code1')=rewriteOp("div-num",e1,params,index,[],args)
val (e2',params2',args2',code2')=rewriteOp("div-denom",e2,params1',index,[],args1')
(*val (e2',params2',args2',code2')=rewriteOp("div-denom",e2,params1',[],[],args1')*)
val body =E.Div(e1',e2')
val einapp= rewriteOrig(y,body,params2',index,[],args2')
in
(einapp,code1'@code2')
end

* calls rewriteOps() lift  on ein_exp
*)
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handleProd:var*ein_exp list*params*index*args-> (var*einap)*code
* calls rewriteOps() lift  on ein_exp
*)
fun handleProd(y,e1,params,index,args)=let
val (e1',params',args',code)=  rewriteOps("prod",e1,params,index,[],args)
val body =E.Prod e1'
val einapp= rewriteOrig(y,body,params',index,[],args')
in
(einapp,code)
end

(* handleSumProd:var*ein_exp *params*index*args-> (var*einap)*code
* calls rewriteOps() lift  on ein_exp
*)
fun handleSumProd(y,e1,params,index,sx,args)=let
val (e1',params',args',code)=  rewriteOps("sumprod",e1,params,index,sx,args)
val body= E.Sum(sx,E.Prod e1')
val einapp= rewriteOrig(y,body,params',index,sx,args')
in
(einapp,code)
end

(* split:var*ein_app-> (var*einap)*code
* split ein expression into smaller pieces
note we leave summation around probe exp
*)
fun split(y,einapp as DstIL.EINAPP(Ein.EIN{params, index, body},args))=let
val zero=   (setEinZero y,[])
val default=((y,einapp),[])
val sumIndex=ref []
val str="Poorly formed EIN operator. Argument needs to be applied in High-IL"^(P.printbody body)
val _=testp["\n\nStarting split",P.printbody body]
fun rewrite b=(case b
of E.Probe (E.Conv _,_)   => default
| E.Probe(E.Field _,_)    => raise Fail str
| E.Probe _               => raise Fail str
| E.Conv _                => zero
| E.Field _               => zero
| E.Apply _               => zero
| E.Lift e                => zero
| E.Delta _               => default
| E.Epsilon _             => default
| E.Eps2 _                => default
| E.Tensor _              => default
| E.Const _               => default
| E.ConstR _              => default
| E.Neg e1                => handleNeg(y,e1,params,index,args)
| E.Sqrt e1               => handleSqrt(y,e1,params,index,args)
| E.PowInt e1             => handlePowInt(y,e1,params,index,args)
| E.PowReal e1            => handlePowReal(y,e1,params,index,args)
| E.Sub (e1,e2)           => handleSub(y,e1,e2,params,index,args)
| E.Div (e1,e2)           => handleDiv(y,e1,e2,params,index,args)
| E.Sum(sx,E.Tensor(id,[]))=> rewrite (E.Tensor(id,[]))
| E.Sum(sx,E.Const c)      =>rewrite ( E.Const c )
| E.Sum(sx,E.ConstR r)    => rewrite (E.ConstR r)
| E.Sum(sx,E.Neg n)       => rewrite (E.Neg(E.Sum(sx,n)))
| E.Sum(sx,E.Sub (e1,e2)) => rewrite (E.Sub(E.Sum(sx,e1),E.Sum(sx,e2)))
| E.Sum(sx,E.Div(e1,e2))  => rewrite (E.Sum(sx,E.Prod[e1,E.Div(E.Const 1,e2)]))
| E.Sum(sx,E.Lift e )     => rewrite (E.Lift(E.Sum(sx,e)))
| E.Sum(sx,E.PowReal(e,n1)) => rewrite (E.PowReal(E.Sum(sx,e),n1))
| E.Sum(sx,E.Sqrt e)        => rewrite (E.Sqrt(E.Sum(sx,e)))
| E.Sum(c1,E.Sum (c2,e))    => rewrite (E.Sum (c1@c2,e))
| E.Sum(_,E.Prod[E.Eps2 _, E.Probe(E.Conv _,_)  ])      => default
| E.Sum(_,E.Prod[E.Epsilon _, E.Probe(E.Conv _,_)  ])      => default
| E.Sum(_,E.Probe(E.Conv _,_))    => default
| E.Sum(_,E.Conv _)       => zero
| E.Sum(sx,E.Prod e1)     => handleSumProd(y,e1,params,index,sx,args)
| E.Sum(sx,_)             => default
| E.Prod e1               => handleProd(y,e1,params,index,args)
| E.Partial _             => err(" Partial used after normalize")
| E.Krn _                 => err("Krn used before expand")
| E.Value _               => err("Value used before expand")
| E.Img _                 => err("Probe used before expand")
(*end case *))
val (einapp2,newbies) =rewrite body
in
(einapp2,newbies)
end
|split(y,app) =((y,app),[])

(*Distribute summation if needed*)
fun distributeSummation(y,einapp as DstIL.EINAPP(Ein.EIN{params, index, body},args))=let
fun rewrite b=(case b
of E.Sum(sx,E.Tensor(id,[]))    => E.Tensor(id,[])
| E.Sum(sx,E.Const c)           => E.Const c
| E.Sum(sx,E.ConstR r)          => E.ConstR r
| E.Sum(sx,E.Neg n)             => rewrite(E.Neg(E.Sum(sx,n)))
| E.Sum(sx,E.Sub (e1,e2))       => rewrite(E.Sub(E.Sum(sx,e1),E.Sum(sx,e2)))
(* | E.Sum(sx,E.Div(e1,e2))        => rewrite( E.Div(E.Sum(sx,e1),E.Sum(sx,e2)))*)
| E.Sum(sx,E.Lift e )           => rewrite (E.Lift(E.Sum(sx,e)))
| E.Sum(sx,E.PowReal(e,n1))     => rewrite(E.PowReal(E.Sum(sx,e),n1))
| E.Sum(sx,E.Sqrt e)            => rewrite(E.Sqrt(E.Sum(sx,e)))
| E.Sum(sx,E.Sum (c2,e))        => rewrite (E.Sum (sx@c2,e))
| E.Sum(sx,E.Prod p)            => let
val (c,e)=filterSca(sx,p)
in e end
| E.Div(e1,e2)                  => E.Div(rewrite e1, rewrite e2)
| E.Sub(e1,e2)                  => E.Sub(rewrite e1, rewrite e2)
| E.Prod es                     => E.Prod(List.map rewrite es)
| E.Neg e                       => E.Neg(rewrite e)
| E.Sqrt e                      => E.Sqrt(rewrite e)
| _                             => b
(*end case*))
val body =rewrite body
val _ =testp["\nAfter distributeSummation \n",P.printbody body]
val ein=SummationEin.cleanSummation(Ein.EIN{params=params, index=index, body=body})
val einapp2= (y,DstIL.EINAPP(ein,args))
in
split(einapp2)
end
|distributeSummation(y,app) =((y,app),[])

(* iterMultiple:code*code=> (code*code)
* recursively split ein expression into smaller pieces
*)
fun iterMultiple(einapp2,newbies2)=let
fun itercode([],rest,code,_)=(rest,code)
| itercode(e1::newbies,rest,code,cnt)=let
val _ =testp["\n\n******* split term **",Int.toString cnt," *****","\n \n",printEINAPP(e1),"\n=>\n"]
val (einapp3,code3) = distributeSummation e1
val _ =testp["\n\t===>\n",printEINAPP(einapp3),"\nand\n",(String.concatWith",\n\t"(List.map printEINAPP code3))]
val (rest4,code4)=itercode(code3,[],[],cnt+1)
in itercode(newbies,rest@[einapp3],code4@rest4@code,cnt+2)
end
val(rest,code)= itercode(newbies2,[],[],1)
in
(einapp2,code@rest)
end

fun iterSplit(y,einapp as DstIL.EINAPP(Ein.EIN{params, index, body},args))=let
val bodysweep=handleE.sweep body
val _=testp["\nPresweep\n",P.printbody body,"\n\n Sweep\n",P.printbody bodysweep,"\n"]
val ein=SummationEin.cleanSummation(Ein.EIN{params=params, index=index, body=bodysweep})
val _=testp["\n\n Clean Summation\n",P.printbody(Ein.body ein),"\n"]
val einapp2=(y,DstIL.EINAPP(ein, args))
val _ =testp["\n\n******* split term **",Int.toString (0)," ***** \n \t==>\n",printEINAPP(einapp2)]
val (einapp3,newbies2)=distributeSummation einapp2
val _ =testp["\n\t===>\n",printEINAPP(einapp3),"\nand\n",(String.concatWith",\n\t"(List.map printEINAPP newbies2))]

in
iterMultiple(einapp3,newbies2)
end

(* gettest:code*code=> (code*code)
* print results for splitting einapp
*)
fun gettest einapp=(case testing
of 0=>iterSplit(einapp)
| _=>let
val star="\n************* SPLIT INITIAL********\n"
val _ =testp[star,"\n","start get test",printEINAPP einapp]
val (einapp2,newbies)=iterSplit(einapp)
val _ =testp["\n\n Returning \n\n =>",printEINAPP einapp2,
" newbies\n\t",String.concatWith",\n\t"(List.map printEINAPP newbies), "\n",star]
in
(einapp2,newbies)
end
(*end case*))

end; (* local *)

end (* local *)