SCM Repository
View of /branches/pure-cfg/src/compiler/c-target/tree-to-c.sml
Parent Directory
|
Revision Log
Revision 919 -
(download)
(annotate)
Thu Apr 21 21:34:14 2011 UTC (9 years, 9 months ago) by jhr
File size: 14140 byte(s)
Thu Apr 21 21:34:14 2011 UTC (9 years, 9 months ago) by jhr
File size: 14140 byte(s)
Export TreeToC for use by other targets
(* tree-to-c.sml * * COPYRIGHT (c) 2011 The Diderot Project (http://diderot-language.cs.uchicago.edu) * All rights reserved. * * Translate TreeIL to the C version of CLang. *) structure TreeToC : sig datatype var = V of (CLang.ty * CLang.var) type env = var TreeIL.Var.Map.map val trType : TreeIL.Ty.ty -> CLang.ty val trBlock : env * (env * TreeIL.exp list * CLang.stm -> CLang.stm list) * TreeIL.block -> CLang.stm val trAssign : env * TreeIL.var * TreeIL.exp -> CLang.stm list val trExp : env * TreeIL.exp -> CLang.exp (* vector indexing support. Arguments are: vector, arity, index *) val ivecIndex : CLang.exp * int * int -> CLang.exp val vecIndex : CLang.exp * int * int -> CLang.exp end = struct structure CL = CLang structure RN = RuntimeNames structure IL = TreeIL structure Op = IL.Op structure Ty = IL.Ty structure V = IL.Var datatype var = V of (CLang.ty * CLang.var) type env = var TreeIL.Var.Map.map fun lookup (env, x) = (case V.Map.find (env, x) of SOME(V(_, x')) => x' | NONE => raise Fail(concat["lookup(_, ", V.name x, ")"]) (* end case *)) (* integer literal expression *) fun intExp (i : int) = CL.mkInt(IntInf.fromInt i, CL.int32) (* translate TreeIL types to CLang types *) fun trType ty = (case ty of Ty.BoolTy => CLang.T_Named "bool" | Ty.StringTy => CL.charPtr | Ty.IVecTy 1 => !RN.gIntTy | Ty.IVecTy n => CL.T_Named(RN.ivecTy n) | Ty.TensorTy[] => !RN.gRealTy | Ty.TensorTy[n] => CL.T_Named(RN.vecTy n) | Ty.TensorTy[n, m] => CL.T_Named(RN.matTy(n,m)) | Ty.AddrTy(ImageInfo.ImgInfo{ty=([], rTy), ...}) => CL.T_Ptr(CL.T_Num rTy) | Ty.ImageTy(ImageInfo.ImgInfo{dim, ...}) => CL.T_Ptr(CL.T_Named(RN.imageTy dim)) | _ => raise Fail(concat["TreeToC.trType(", Ty.toString ty, ")"]) (* end case *)) (* generate new variables *) local val count = ref 0 fun freshName prefix = let val n = !count in count := n+1; concat[prefix, "_", Int.toString n] end in fun tmpVar ty = freshName "tmp" fun freshVar prefix = freshName prefix end (* local *) (* translate IL basis functions *) local fun mkLookup suffix = let val tbl = ILBasis.Tbl.mkTable (16, Fail "basis table") fun ins f = ILBasis.Tbl.insert tbl (f, ILBasis.toString f ^ suffix) in List.app ins ILBasis.allFuns; ILBasis.Tbl.lookup tbl end val fLookup = mkLookup "f" val dLookup = mkLookup "" in fun trApply (f, args) = let val f' = if !Controls.doublePrecision then dLookup f else fLookup f in CL.mkApply(f', args) end end (* local *) (* vector indexing support. Arguments are: vector, arity, index *) fun ivecIndex (v, n, ix) = let val unionTy = CL.T_Named(concat["union", Int.toString n, !RN.gIntSuffix, "_t"]) val e1 = CL.mkCast(unionTy, v) val e2 = CL.mkSelect(e1, "i") in CL.mkSubscript(e2, intExp ix) end fun vecIndex (v, n, ix) = let val unionTy = CL.T_Named(concat["union", Int.toString n, !RN.gRealSuffix, "_t"]) val e1 = CL.mkCast(unionTy, v) val e2 = CL.mkSelect(e1, "r") in CL.mkSubscript(e2, intExp ix) end (* translate a variable use *) fun trVar (env, x) = (case V.kind x of IL.VK_Global => CL.mkVar(lookup(env, x)) | IL.VK_State strand => CL.mkIndirect(CL.mkVar "selfIn", lookup(env, x)) | IL.VK_Local => CL.mkVar(lookup(env, x)) (* end case *)) (* Translate a TreeIL operator application to a CLang expression *) fun trOp (rator, args) = (case (rator, args) of (Op.Add ty, [a, b]) => CL.mkBinOp(a, CL.#+, b) | (Op.Sub ty, [a, b]) => CL.mkBinOp(a, CL.#-, b) | (Op.Mul ty, [a, b]) => CL.mkBinOp(a, CL.#*, b) | (Op.Div ty, [a, b]) => CL.mkBinOp(a, CL.#/, b) | (Op.Neg ty, [a]) => CL.mkUnOp(CL.%-, a) | (Op.Abs(Ty.IVecTy 1), args) => CL.mkApply("abs", args) | (Op.Abs(Ty.TensorTy[]), args) => CL.mkApply(RN.fabs(), args) | (Op.Abs ty, [a]) => raise Fail(concat["Abs<", Ty.toString ty, ">"]) | (Op.LT ty, [a, b]) => CL.mkBinOp(a, CL.#<, b) | (Op.LTE ty, [a, b]) => CL.mkBinOp(a, CL.#<=, b) | (Op.EQ ty, [a, b]) => CL.mkBinOp(a, CL.#==, b) | (Op.NEQ ty, [a, b]) => CL.mkBinOp(a, CL.#!=, b) | (Op.GTE ty, [a, b]) => CL.mkBinOp(a, CL.#>=, b) | (Op.GT ty, [a, b]) => CL.mkBinOp(a, CL.#>, b) | (Op.Not, [a]) => CL.mkUnOp(CL.%!, a) | (Op.Max, args) => CL.mkApply(RN.max(), args) | (Op.Min, args) => CL.mkApply(RN.min(), args) | (Op.Lerp ty, args) => (case ty of Ty.TensorTy[] => CL.mkApply(RN.lerp 1, args) | Ty.TensorTy[n] => CL.mkApply(RN.lerp n, args) | _ => raise Fail(concat[ "lerp<", Ty.toString ty, "> not supported" ]) (* end case *)) | (Op.Dot d, args) => CL.E_Apply(RN.dot d, args) | (Op.MulVecMat(m, n), args) => if (1 < m) andalso (m < 4) andalso (m = n) then CL.E_Apply(RN.mulVecMat(m,n), args) else raise Fail "unsupported vector-matrix multiply" | (Op.MulMatVec(m, n), args) => if (1 < m) andalso (m < 4) andalso (m = n) then CL.E_Apply(RN.mulMatVec(m,n), args) else raise Fail "unsupported matrix-vector multiply" | (Op.MulMatMat(m, n, p), args) => if (1 < m) andalso (m < 4) andalso (m = n) andalso (n = p) then CL.E_Apply(RN.mulMatMat(m,n,p), args) else raise Fail "unsupported matrix-matrix multiply" | (Op.Cross, args) => CL.E_Apply(RN.cross(), args) | (Op.Select(Ty.IVecTy n, i), [a]) => ivecIndex (a, n, i) | (Op.Select(Ty.TensorTy[n], i), [a]) => vecIndex (a, n, i) | (Op.Norm(Ty.TensorTy[n]), args) => CL.E_Apply(RN.length n, args) | (Op.Norm(Ty.TensorTy[m,n]), args) => CL.E_Apply(RN.norm(m,n), args) | (Op.Normalize d, args) => CL.E_Apply(RN.normalize d, args) | (Op.Trace n, args) => CL.E_Apply(RN.trace n, args) | (Op.Scale(Ty.TensorTy[n]), args) => CL.E_Apply(RN.scale n, args) | (Op.CL, _) => raise Fail "CL unimplemented" | (Op.PrincipleEvec ty, _) => raise Fail "PrincipleEvec unimplemented" | (Op.Subscript(Ty.IVecTy n), [v, ix]) => let val unionTy = CL.T_Named(concat["union", Int.toString n, !RN.gIntSuffix, "_t"]) val vecExp = CL.mkSelect(CL.mkCast(unionTy, v), "i") in CL.mkSubscript(vecExp, ix) end | (Op.Subscript(Ty.TensorTy[n]), [v, ix]) => let val unionTy = CL.T_Named(concat["union", Int.toString n, !RN.gRealSuffix, "_t"]) val vecExp = CL.mkSelect(CL.mkCast(unionTy, v), "r") in CL.mkSubscript(vecExp, ix) end | (Op.Subscript(Ty.TensorTy[_,_]), [m, ix, jx]) => CL.mkSubscript(CL.mkSelect(CL.mkSubscript(m, ix), "r"), jx) | (Op.Subscript ty, t::(ixs as _::_)) => raise Fail(concat["Subscript<", Ty.toString ty, "> unsupported"]) | (Op.Ceiling d, args) => CL.mkApply(RN.addTySuffix("ceil", d), args) | (Op.Floor d, args) => CL.mkApply(RN.addTySuffix("floor", d), args) | (Op.Round d, args) => CL.mkApply(RN.addTySuffix("round", d), args) | (Op.Trunc d, args) => CL.mkApply(RN.addTySuffix("trunc", d), args) | (Op.IntToReal, [a]) => CL.mkCast(!RN.gRealTy, a) | (Op.RealToInt 1, [a]) => CL.mkCast(!RN.gIntTy, a) | (Op.RealToInt d, args) => CL.mkApply(RN.vecftoi d, args) (* FIXME: need type info *) | (Op.ImageAddress(ImageInfo.ImgInfo{ty=(_,rTy), ...}), [a]) => let val cTy = CL.T_Ptr(CL.T_Num rTy) in CL.mkCast(cTy, CL.mkIndirect(a, "data")) end | (Op.LoadVoxels(info, 1), [a]) => let val realTy as CL.T_Num rTy = !RN.gRealTy val a = CL.E_UnOp(CL.%*, a) in if (rTy = ImageInfo.sampleTy info) then a else CL.E_Cast(realTy, a) end | (Op.LoadVoxels _, [a]) => raise Fail("impossible " ^ Op.toString rator) | (Op.PosToImgSpace(ImageInfo.ImgInfo{dim, ...}), [img, pos]) => CL.mkApply(RN.toImageSpace dim, [img, pos]) | (Op.GradToWorldSpace d, [v, x]) => raise Fail "GradToWorldSpace unimplemented" | (Op.LoadImage info, [a]) => raise Fail("impossible " ^ Op.toString rator) | (Op.Inside(ImageInfo.ImgInfo{dim, ...}, s), [pos, img]) => CL.mkApply(RN.inside dim, [pos, img, intExp s]) | (Op.Input(ty, name), []) => raise Fail("impossible " ^ Op.toString rator) | (Op.InputWithDefault(ty, name), [a]) => raise Fail("impossible " ^ Op.toString rator) | _ => raise Fail(concat[ "unknown or incorrect operator ", Op.toString rator ]) (* end case *)) fun trExp (env, e) = (case e of IL.E_Var x => trVar (env, x) | IL.E_Lit(Literal.Int n) => CL.mkInt(n, !RN.gIntTy) | IL.E_Lit(Literal.Bool b) => CL.mkBool b | IL.E_Lit(Literal.Float f) => CL.mkFlt(f, !RN.gRealTy) | IL.E_Lit(Literal.String s) => CL.mkStr s | IL.E_Op(rator, args) => trOp (rator, trExps(env, args)) | IL.E_Apply(f, args) => trApply(f, trExps(env, args)) | IL.E_Cons(Ty.TensorTy[n], args) => CL.mkApply(RN.mkVec n, trExps(env, args)) | IL.E_Cons(ty, _) => raise Fail(concat["E_Cons(", Ty.toString ty, ", _) in expression"]) (* end case *)) and trExps (env, exps) = List.map (fn exp => trExp(env, exp)) exps fun trAssign (env, lhs, rhs) = let val lhs = (case V.kind lhs of IL.VK_Global => CL.mkVar(lookup(env, lhs)) | IL.VK_State strand => CL.mkIndirect(CL.mkVar "selfOut", lookup(env, lhs)) | IL.VK_Local => CL.mkVar(lookup(env, lhs)) (* end case *)) in (* certain rhs forms, such as those that return a matrix, * require a function call instead of an assignment *) case rhs of IL.E_Op(Op.Add(Ty.TensorTy[m,n]), args) => [CL.mkCall(RN.addMat(m,n), lhs :: trExps(env, args))] | IL.E_Op(Op.Sub(Ty.TensorTy[m,n]), args) => [CL.mkCall(RN.subMat(m,n), lhs :: trExps(env, args))] | IL.E_Op(Op.Neg(Ty.TensorTy[m,n]), args) => [CL.mkCall(RN.scaleMat(m,n), lhs :: intExp ~1 :: trExps(env, args))] | IL.E_Op(Op.Scale(Ty.TensorTy[m,n]), args) => [CL.mkCall(RN.scaleMat(m,n), lhs :: trExps(env, args))] | IL.E_Op(Op.MulMatMat(m,n,p), args) => [CL.mkCall(RN.mulMatMat(m,n,p), lhs :: trExps(env, args))] | IL.E_Op(Op.Identity n, args) => [CL.mkCall(RN.identityMat n, [lhs])] | IL.E_Op(Op.Zero(Ty.TensorTy[n,m]), args) => [CL.mkCall(RN.zeroMat(m,n), [lhs])] | IL.E_Op(Op.LoadVoxels(info, n), [a]) => if (n > 1) then let val stride = ImageInfo.stride info val rTy = ImageInfo.sampleTy info val vp = freshVar "vp" val needsCast = (CL.T_Num rTy <> !RN.gRealTy) fun mkLoad i = let val e = CL.mkSubscript(CL.mkVar vp, intExp(i*stride)) in if needsCast then CL.mkCast(!RN.gRealTy, e) else e end in [ CL.mkDecl(CL.T_Ptr(CL.T_Num rTy), vp, SOME(CL.I_Exp(trExp(env, a)))), CL.mkAssign(lhs, CL.mkApply(RN.mkVec n, List.tabulate (n, mkLoad))) ] end else [CL.mkAssign(lhs, trExp(env, rhs))] | IL.E_Cons(Ty.TensorTy[n,m], args) => let (* matrices are represented as arrays of union<d><ty>_t vectors *) fun doRows (_, []) = [] | doRows (i, e::es) = CL.mkAssign(CL.mkSelect(CL.mkSubscript(lhs, intExp i), "v"), e) :: doRows (i+1, es) in doRows (0, trExps(env, args)) end | IL.E_Var x => (case IL.Var.ty x of Ty.TensorTy[n,m] => [CL.mkCall(RN.copyMat(n,m), [lhs, trVar(env, x)])] | _ => [CL.mkAssign(lhs, trVar(env, x))] (* end case *)) | _ => [CL.mkAssign(lhs, trExp(env, rhs))] (* end case *) end fun trBlock (env : env, saveState, blk) = let (* generate code to check the status of runtime-system calls *) fun checkSts mkDecl = let val sts = freshVar "sts" in mkDecl sts @ [CL.mkIfThen( CL.mkBinOp(CL.mkVar "DIDEROT_OK", CL.#!=, CL.mkVar sts), CL.mkCall("exit", [intExp 1]))] end fun trStmt (env, stm) = (case stm of IL.S_Comment text => [CL.mkComment text] | IL.S_Assign(x, exp) => trAssign (env, x, exp) | IL.S_IfThen(cond, thenBlk) => [CL.mkIfThen(trExp(env, cond), trBlk(env, thenBlk))] | IL.S_IfThenElse(cond, thenBlk, elseBlk) => [CL.mkIfThenElse(trExp(env, cond), trBlk(env, thenBlk), trBlk(env, elseBlk))] | IL.S_LoadImage(lhs, dim, name) => checkSts (fn sts => let val lhs = lookup(env, lhs) val name = trExp(env, name) val imgTy = CL.T_Named(RN.imageTy dim) val loadFn = RN.loadImage dim in [ CL.mkDecl( CL.T_Named RN.statusTy, sts, SOME(CL.I_Exp(CL.E_Apply(loadFn, [name, CL.mkUnOp(CL.%&, CL.E_Var lhs)])))) ] end) | IL.S_Input(lhs, name, optDflt) => checkSts (fn sts => let val inputFn = RN.input(V.ty lhs) val lhs = lookup(env, lhs) val lhs = CL.E_Var lhs val (initCode, hasDflt) = (case optDflt of SOME e => ([CL.mkAssign(lhs, trExp(env, e))], true) | NONE => ([], false) (* end case *)) val code = [ CL.mkDecl( CL.T_Named RN.statusTy, sts, SOME(CL.I_Exp(CL.E_Apply(inputFn, [ CL.E_Str name, CL.mkUnOp(CL.%&, lhs), CL.mkBool hasDflt ])))) ] in initCode @ code end) (* FIXME: what about the args? *) | IL.S_Exit args => [CL.mkReturn NONE] | IL.S_Active args => saveState (env, args, CL.mkReturn(SOME(CL.mkVar RN.kActive))) | IL.S_Stabilize args => saveState (env, args, CL.mkReturn(SOME(CL.mkVar RN.kStabilize))) | IL.S_Die => [CL.mkReturn(SOME(CL.mkVar RN.kDie))] (* end case *)) and trBlk (env, IL.Block{locals, body}) = let val env = List.foldl (fn (x, env) => V.Map.insert(env, x, V(trType(V.ty x), V.name x))) env locals val stms = List.foldr (fn (stm, stms) => trStmt(env, stm)@stms) [] body fun mkDecl (x, stms) = (case V.Map.find (env, x) of SOME(V(ty, x')) => CL.mkDecl(ty, x', NONE) :: stms | NONE => raise Fail(concat["mkDecl(", V.name x, ", _)"]) (* end case *)) val stms = List.foldr mkDecl stms locals in CL.mkBlock stms end in trBlk (env, blk) end end
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |