Home My Page Projects Code Snippets Project Openings diderot
Summary Activity Tracker Tasks SCM

SCM Repository

[diderot] View of /branches/pure-cfg/src/compiler/cl-target/cl-target.sml
ViewVC logotype

View of /branches/pure-cfg/src/compiler/cl-target/cl-target.sml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1256 - (download) (annotate)
Tue May 24 17:58:28 2011 UTC (8 years, 3 months ago) by lamonts
File size: 33089 byte(s)
Added globals support to host side for the OpenCL
(* c-target.sml
 *
 * COPYRIGHT (c) 2011 The Diderot Project (http://diderot-language.cs.uchicago.edu)
 * All rights reserved.
 *)

structure CLTarget : TARGET =
  struct

    structure IL = TreeIL
    structure V = IL.Var
    structure Ty = IL.Ty
    structure CL = CLang
    structure RN = RuntimeNames
    structure ToC = TreeToCL

    type var = ToC.var
    type exp = CL.exp
    type stm = CL.stm

    datatype strand = Strand of {
	name : string,
	tyName : string,
	state : var list ref,
	output : (Ty.ty * CL.var) option ref,	(* the strand's output variable (only one for now) *)
	code : CL.decl list ref
      }

    datatype program = Prog of {
	double : bool,			(* true for double-precision support *)
	parallel : bool,		(* true for multithreaded (or multi-GPU) target *)
	debug : bool,			(* true for debug support in executable *)
	globals : CL.decl list ref,
	topDecls : CL.decl list ref,
	strands : strand AtomTable.hash_table,
	initially : CL.stm list ref,
	numDims: int ref, 
	imgGlobals: (string * int) list ref,
	oneDim: CL.exp ref, 
	twoDim: CL.exp ref, 
	thirdDim: CL.exp ref
    }

    datatype env = ENV of {
	info : env_info,
	vMap : var V.Map.map,
	scope : scope
      }

    and env_info = INFO of {
	prog : program
      }

    and scope
      = NoScope
      | GlobalScope
      | InitiallyScope
      | StrandScope of TreeIL.var list	(* strand initialization *)
      | MethodScope of TreeIL.var list	(* method body; vars are state variables *)

  (* the supprted widths of vectors of reals on the target.  For the GNU vector extensions,
   * the supported sizes are powers of two, but float2 is broken.
   * NOTE: we should also consider the AVX vector hardware, which has 256-bit registers.
   *)
    fun vectorWidths () = if !RuntimeNames.doublePrecision
	  then [2, 4, 8]
	  else [4, 8]

  (* tests for whether various expression forms can appear inline *)
    fun inlineCons n = (n < 2)		(* vectors are inline, but not matrices *)
    val inlineMatrixExp = false		(* can matrix-valued expressions appear inline? *)

  (* TreeIL to target translations *)
    structure Tr =
      struct
	fun fragment (ENV{info, vMap, scope}, blk) = let
	      val (vMap, stms) = ToC.trFragment (vMap, blk)
	      in
		(ENV{info=info, vMap=vMap, scope=scope}, stms)
	      end
	fun saveState cxt stateVars (env, args, stm) = (
	      ListPair.foldrEq
		(fn (x, e, stms) => ToC.trAssign(env, x, e)@stms)
		  [stm]
		    (stateVars, args)
	      ) handle ListPair.UnequalLengths => (
		print(concat["saveState ", cxt, ": length mismatch; ", Int.toString(List.length args), " args\n"]);
		raise Fail(concat["saveState ", cxt, ": length mismatch"]))
	fun block (ENV{vMap, scope, ...}, blk) = (case scope
	       of StrandScope stateVars => ToC.trBlock (vMap, saveState "StrandScope" stateVars, blk)
		| MethodScope stateVars => ToC.trBlock (vMap, saveState "MethodScope" stateVars, blk)
		| _ => ToC.trBlock (vMap, fn (_, _, stm) => [stm], blk)
	      (* end case *))
	fun exp (ENV{vMap, ...}, e) = ToC.trExp(vMap, e)
      end

  (* variables *)
    structure Var =
      struct
	fun name (ToC.V(_, name)) = name
	 fun global (Prog{globals,imgGlobals, ...}, name, ty) = let
	      val ty' = ToC.trType ty
	      fun isImgGlobal (imgGlobals, Ty.ImageTy(ImageInfo.ImgInfo{dim, ...}), name) =  imgGlobals  := (name,dim):: !imgGlobals 
	      	| isImgGlobal (imgGlobals, _, _) =  () 
	      in
		globals := CL.D_Var([], ty', name, NONE) :: !globals;
		isImgGlobal(imgGlobals,ty,name); 
	     ToC.V(ty', name)
	      end
	fun param x = ToC.V(ToC.trType(V.ty x), V.name x)
	fun state (Strand{state, ...}, x) = let
	      val ty' = ToC.trType(V.ty x)
	      val x' = ToC.V(ty', V.name x)
	      in
		state := x' :: !state;
		x'
	      end
      end

  (* environments *)
    structure Env =
      struct
      (* create a new environment *)
	fun new prog = ENV{
		info=INFO{prog = prog},
		vMap = V.Map.empty,
		scope = NoScope
	      }
      (* define the current translation context *)
	fun setScope scope (ENV{info, vMap, ...}) = ENV{info=info, vMap=vMap, scope=scope}
	val scopeGlobal = setScope GlobalScope
	val scopeInitially = setScope InitiallyScope
	fun scopeStrand (env, svars) = setScope (StrandScope svars) env
	fun scopeMethod (env, svars) = setScope (MethodScope svars) env
      (* bind a TreeIL varaiable to a target variable *)
	fun bind (ENV{info, vMap, scope}, x, x') = ENV{
		info = info,
		vMap = V.Map.insert(vMap, x, x'),
		scope = scope
	      }
      end

  (* programs *)
    structure Program =
      struct
	fun new {double, parallel, debug} = (
	      RN.initTargetSpec double;
	      Prog{
		  double = double, parallel = parallel, debug = debug,
		  globals = ref [
		    CL.D_Verbatim[
			if double
			  then "#define DIDEROT_DOUBLE_PRECISION"
			  else "#define DIDEROT_SINGLE_PRECISION",
			"#include \"Diderot/opencl_types.h\""
		      ]],
		  topDecls = ref [],
		  strands = AtomTable.mkTable (16, Fail "strand table"),
		  initially = ref([CL.S_Comment["missing initially"]]),
		  numDims = ref(0), 
		  imgGlobals = ref[], 
		  oneDim = ref(CL.E_Str "did not initalize dim"),
		  twoDim = ref(CL.E_Str "did not initalize dim"), 
		  thirdDim = ref(CL.E_Str "did not initalize dim")
		})
      (* register the global initialization part of a program *)
   	fun globalIndirects (globals,stms) = let
		 fun getGlobals(CL.D_Var(_,_,globalVar,_)::rest) = CL.mkAssign(CL.mkIndirect(CL.E_Var RN.globalsVarName,globalVar),CL.E_Var globalVar)::getGlobals(rest) 
		   | getGlobals([]) = [] 
		   | getGlobals(_::rest) = getGlobals(rest) 
		in 
		  	stms @ getGlobals(globals) 
		end 
		
	fun init (Prog{globals,topDecls,...}, CL.S_Block(init)) = let
	      val params = [
			  CL.PARAM([], CL.T_Ptr(CL.T_Named RN.globalsTy), RN.globalsVarName)
			]
		   val body = CL.S_Block(globalIndirects(!globals,init)) 
		   val initFn = CL.D_Func([], CL.voidTy, RN.initGlobals, params, body)
		
	      in
			topDecls := initFn :: !topDecls
	      end
		
	  | init (Prog{globals,topDecls,...}, init) = let
	      val params = [
			  CL.PARAM([], CL.T_Ptr(CL.T_Named RN.globalsTy), RN.globalsVarName)
			]
		   val initFn = CL.D_Func([], CL.voidTy, RN.initGlobals, params, init)
		
	      in
		topDecls := initFn :: !topDecls
	      end
	    
      (* create and register the initially function for a program *)
	fun initially {
	      prog = Prog{strands, initially,numDims,oneDim,twoDim,thirdDim,...},
	      isArray : bool,
	      iterPrefix : stm list,
	      iters : (var * exp * exp) list,
	      createPrefix : stm list,
	      strand : Atom.atom,
	      args : exp list
	    } = let
	      val name = Atom.toString strand
	      val nDims = List.length iters
	      fun mapi f xs = let
		    fun mapf (_, []) = []
		      | mapf (i, x::xs) = f(i, x) :: mapf(i+1, xs)
		    in
		      mapf (0, xs)
		    end
	      val baseInit = mapi (fn (i, (_, e, _)) => (i, CL.I_Exp e)) iters
	      val sizeInit = mapi
		    (fn (i, (ToC.V(ty, _), lo, hi)) =>
			(i, CL.I_Exp(CL.mkBinOp(CL.mkBinOp(hi, CL.#-, lo), CL.#+, CL.E_Int(1, ty))))
		    ) iters
		  val numStrandsVar = "numStrandsVar" 
	      val allocCode = iterPrefix @ [
		      CL.mkComment["allocate initial block of strands"],
		      CL.mkDecl(CL.T_Array(CL.int32, SOME nDims), "base", SOME(CL.I_Array baseInit)),
		      CL.mkDecl(CL.T_Array(CL.uint32, SOME nDims), "size", SOME(CL.I_Array sizeInit)),
		      CL.mkDecl(CL.int32,"numDims",SOME(CL.I_Exp(CL.E_Int(IntInf.fromInt nDims, CL.int32))))
			  ]
		    
	    fun mkLoopNest ([],_,_,_,_) = ()
    	  | mkLoopNest ((ToC.V(ty, param), lo, hi)::iters, oneDim,twoDim,thirdDim, 3) =  
    	  			(oneDim := hi; mkLoopNest (iters,oneDim,twoDim,thirdDim, 2))
    	  | mkLoopNest ((ToC.V(ty, param), lo, hi)::iters, oneDim,twoDim,thirdDim, 2) =  
    	  			(twoDim := hi; mkLoopNest (iters,oneDim,twoDim,thirdDim, 1))
    	  | mkLoopNest ((ToC.V(ty, param), lo, hi)::iters, oneDim,twoDim,thirdDim, 1) =  
    	  			 (thirdDim := hi; mkLoopNest (iters,oneDim,twoDim,thirdDim, 0))
    	  | mkLoopNest ((ToC.V(ty, param), lo, hi)::iters,_,_,_,_) = () 

			

		  val numStrandsLoopBody = CL.mkExpStm(CL.mkAssignOp(CL.E_Var numStrandsVar, CL.*=,CL.mkSubscript(CL.E_Var "size",CL.E_Var "i")))
		  
		  
		  val numStrandsLoop =  CL.mkFor([(CL.intTy, "i", CL.E_Int(0,CL.intTy))], 
		  								   CL.mkBinOp(CL.E_Var "i", CL.#<, CL.E_Var "numDims"), 
		  								   [CL.mkPostOp(CL.E_Var "i", CL.^++)], numStrandsLoopBody)
	      in
	      	  numDims := nDims; 
	      	  initially := allocCode @ [numStrandsLoop];
	      	  mkLoopNest (iters,oneDim, twoDim, thirdDim, nDims) 
	      	      
	      end

      (***** OUTPUT *****)
    fun genStrand (Strand{name, tyName, state, output, code}) = let
	    (* the print function *)
	      val prFnName = concat[name, "_print"]
	      val prFn = let
		    val params = [
			  CL.PARAM([], CL.T_Ptr(CL.T_Named "FILE"), "outS"),
			  CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "self")
			]
		    val SOME(ty, x) = !output
		    val outState = CL.mkIndirect(CL.mkVar "self", x)
		    val prArgs = (case ty
			   of Ty.IVecTy 1 => [CL.E_Str(!RN.gIntFormat ^ "\n"), outState]
			    | Ty.IVecTy d => let
				val fmt = CL.E_Str(
				      String.concatWith " " (List.tabulate(d, fn _ => !RN.gIntFormat))
				      ^ "\n")
				val args = List.tabulate (d, fn i => ToC.ivecIndex(outState, d, i))
				in
				  fmt :: args
				end
			    | Ty.TensorTy[] => [CL.E_Str "%f\n", outState]
			    | Ty.TensorTy[d] => let
				val fmt = CL.E_Str(
				      String.concatWith " " (List.tabulate(d, fn _ => "%f"))
				      ^ "\n")
				val args = List.tabulate (d, fn i => ToC.vecIndex(outState, d, i))
				in
				  fmt :: args
				end
			    | _ => raise Fail("genStrand: unsupported output type " ^ Ty.toString ty)
			  (* end case *))
		    in
		      CL.D_Func(["static"], CL.voidTy, prFnName, params,
			CL.mkCall("fprintf", CL.mkVar "outS" :: prArgs))
		    end
	      in
				 List.rev (prFn :: !code)
	      end 
	fun genStrandTyDef (Strand{tyName, state,...}) = 
	    (* the type declaration for the strand's state struct *)
	      CL.D_StructDef(
		      List.rev (List.map (fn ToC.V(ty, x) => (ty, x)) (!state)),
		      tyName)
	
	
	(* generates the load kernel function *)
	fun genKernelLoader() =  
		CL.D_Verbatim ( ["/* Loads the Kernel from a file */", 
						"char * loadKernel (const char * filename) {",
						"struct stat statbuf;",
						"FILE *fh;",
						"char *source;",
						"fh = fopen(filename, \"r\");",
						"if (fh == 0)",
						"   return 0;",
						"stat(filename, &statbuf);",
						"source = (char *) malloc(statbuf.st_size + 1);",
						"fread(source, statbuf.st_size, 1, fh);",
						"fread(source, statbuf.st_size, 1, fh);",
						"return source;",
						"}"]) 
	(* generates the opencl buffers for the image data *) 
	fun getGlobalDataBuffers(globals,count,contextVar,errVar) = let 
	val globalBufferDecl =  CL.mkDecl(CL.clMemoryTy,concat[RN.globalsVarName,"_cl"],NONE)
	val globalBuffer = CL.mkAssign(CL.E_Var(concat[RN.globalsVarName,"_cl"]), CL.mkApply("clCreateBuffer",
								[CL.E_Var contextVar,
							 	CL.E_Var "CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR",
							 	CL.mkApply("sizeof",[CL.E_Var RN.globalsTy]),
							 	CL.E_Var RN.globalsVarName,
							 	CL.E_UnOp(CL.%&,CL.E_Var errVar)]))
	
	fun genDataBuffers([],_,_,_) = [] 
	  | genDataBuffers((var,nDims)::globals,count,contextVar,errVar) = let 
	  	   val size = if nDims = 1 then 
	  	   			CL.mkBinOp(CL.mkApply("sizeof",[CL.E_Var "float"]), CL.#*, 
	  	   			 CL.mkIndirect(CL.E_Var var, "size[0]"))
	  	   			else if nDims = 2 then 
	  	   			CL.mkBinOp(CL.mkApply("sizeof",[CL.E_Var "float"]), CL.#*, 
	  	   			  CL.mkIndirect(CL.E_Var var, concat["size[0]", " * ", var, "->size[1]"])) 
	  	   			else 
	  	   			 CL.mkBinOp(CL.mkApply("sizeof",[CL.E_Var "float"]), CL.#*, 
	  	   			  CL.mkIndirect(CL.E_Var var,concat["size[0]", " * ", var, "->size[1] * ", var, "->size[2]"])) 
	  	   													
	  	 in 
	  	   CL.mkDecl(CL.clMemoryTy,RN.addBufferSuffix var ,NONE)::
	  	   CL.mkDecl(CL.clMemoryTy,RN.addBufferSuffixData var ,NONE)::
	  	   CL.mkAssign(CL.E_Var(RN.addBufferSuffix var), CL.mkApply("clCreateBuffer",
								[CL.E_Var contextVar,
							 	CL.E_Var "CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR",
							 	CL.mkApply("sizeof",[CL.E_Var (RN.imageTy nDims)]),
							 	CL.E_Var var,
							 	CL.E_UnOp(CL.%&,CL.E_Var errVar)])) :: 
			CL.mkAssign(CL.E_Var(RN.addBufferSuffixData var), CL.mkApply("clCreateBuffer",
								[CL.E_Var contextVar,
							 	CL.E_Var "CL_MEM_READ_WRITE | CL_MEM_ALLOC_HOST_PTR | CL_MEM_COPY_HOST_PTR",
							 	size,
							 	CL.mkIndirect(CL.E_Var var,"data"),
							 	CL.E_UnOp(CL.%&,CL.E_Var errVar)])):: genDataBuffers(globals,count + 2,contextVar,errVar) 
		end
	in 
		[globalBufferDecl] @ [globalBuffer] @ genDataBuffers(globals,count + 2,contextVar,errVar) 
	
	end 
	
	(* generates the kernel arguments for the image data *) 
	fun genGlobalArguments(globals,count,kernelVar,errVar) = let 
	val globalArgument = CL.mkAssign(CL.E_Var errVar,CL.mkApply("clSetKernelArg",
							 	[CL.E_Var kernelVar, 
							 	 CL.E_Int(count,CL.intTy),
							 	 CL.mkApply("sizeof",[CL.E_Var "cl_mem"]),
							 	 CL.E_UnOp(CL.%&,CL.E_Var(concat[RN.globalsVarName,"_cl"]))]))
	
	fun genDataArguments([],_,_,_) = [] 
	  | genDataArguments((var,nDims)::globals,count,kernelVar,errVar) = 
	
		CL.mkAssign(CL.E_Var errVar,CL.mkApply("clSetKernelArg",
							 	[CL.E_Var kernelVar, 
							 	 CL.E_Int(count,CL.intTy),
							 	 CL.mkApply("sizeof",[CL.E_Var "cl_mem"]),
							 	 CL.E_UnOp(CL.%&,CL.E_Var(concat[var,"_cl"]))]))::
	  
			CL.mkAssign(CL.E_Var errVar,CL.mkApply("clSetKernelArg",
							 	[CL.E_Var kernelVar, 
							 	 CL.E_Int((count + 1),CL.intTy),
							 	 CL.mkApply("sizeof",[CL.E_Var "cl_mem"]),
							 	 CL.E_UnOp(CL.%&,CL.E_Var(concat[var,"_cl", IntegerLit.toString (count + 1)]))])):: genDataArguments (globals, count + 2,kernelVar,errVar) 
		 
	in
	
		[globalArgument] @ genDataArguments(globals,count + 1,kernelVar,errVar) 
	
	end 
	(* generates the main function of host code *) 
	fun genHostMain() = let 
		val setupCall = [CL.mkCall(RN.setupFName,[CL.E_Var RN.globalsVarName])]
		val globalsDecl = CL.mkDecl(CL.T_Ptr(CL.T_Named RN.globalsTy), RN.globalsVarName,SOME(CL.I_Exp(CL.mkApply("malloc",
									[CL.mkApply("sizeof",[CL.E_Var RN.globalsTy])]))))
		val initGlobalsCall = CL.mkCall(RN.initGlobals,[CL.E_Var RN.globalsVarName])
		val returnStm = [CL.mkReturn(SOME(CL.E_Int(0,CL.intTy)))]
		val params = [ 
			 CL.PARAM([],CL.intTy, "argc"),
			 CL.PARAM([],CL.charArrayPtr,"argv")
			 ]
		val body = CL.mkBlock([globalsDecl] @ [initGlobalsCall]  @ setupCall @ returnStm)
		in 
		  CL.D_Func([],CL.intTy,"main",params,body) 
		end 
	(* generates the host-side setup function *) 
	fun genHostSetupFunc(strand as Strand{name,tyName,...}, filename, nDims, initially, imgGlobals, oneDim, twoDim, thirdDim) = let
		(*Delcare opencl setup objects *) 
		val programVar= "program" 
		val kernelVar = "kernel"
		val cmdVar = "queue" 
		val inStateVar = "selfin" 
		val outStateVar = "selfout" 
		val stateSizeVar= "state_mem_size" 
		val clInstateVar = "clSelfIn"
		val clOutStateVar = "clSelfOut" 
		val clGlobals = "clGlobals" 
		val sourcesVar = "sources" 
		val contextVar = "context" 
		val errVar = "err"
		val imgDataSizeVar = "image_dataSize"
		val globalVar = "global_work_size"
		val localVar = "local_work_size" 
		val clFNVar = "filename"
		val numStrandsVar = "numStrandsVar" 
		val headerFNVar = "header"  
		val deviceVar = "device" 
		val platformsVar = "platforms" 
		val numPlatformsVar = "num_platforms" 
		val numDevicesVar = "num_devices"
		val assertStm = CL.mkCall("assert",[CL.mkBinOp(CL.E_Var errVar, CL.#==, CL.E_Var "CL_SUCCESS")])
		val params = [ 
			 CL.PARAM([],CL.T_Ptr(CL.T_Named RN.globalsTy), RN.globalsVarName)
			 ]
		val delcarations = [CL.mkDecl(CL.clProgramTy, programVar, NONE),
		 	  CL.mkDecl(CL.clKernelTy, kernelVar, NONE),
			  CL.mkDecl(CL.clCmdQueueTy, cmdVar, NONE),
			  CL.mkDecl(CL.clContextTy, contextVar, NONE),
			  CL.mkDecl(CL.intTy, errVar, NONE),
			  CL.mkDecl(CL.intTy, numStrandsVar, NONE), 
			  CL.mkDecl(CL.intTy, numPlatformsVar, NONE), 
			  CL.mkDecl(CL.intTy, stateSizeVar, NONE), 
			  CL.mkDecl(CL.intTy, imgDataSizeVar, NONE), 
			  CL.mkDecl(CL.clDeviceIdTy, deviceVar, NONE), 
			  CL.mkDecl(CL.T_Ptr(CL.T_Named tyName), inStateVar,NONE), 
			  CL.mkDecl(CL.clMemoryTy,clInstateVar,NONE),
			  CL.mkDecl(CL.clMemoryTy,clOutStateVar,NONE), 
			  CL.mkDecl(CL.T_Ptr(CL.T_Named tyName), outStateVar,NONE),
			  CL.mkDecl(CL.charPtr, clFNVar,SOME(CL.I_Exp(CL.E_Str filename))),
			  CL.mkDecl(CL.charPtr, headerFNVar,SOME(CL.I_Exp(CL.E_Str "Diderot/opencl_types.h"))), 
			  CL.mkDecl(CL.T_Array(CL.charPtr,SOME(2)),sourcesVar,NONE), 
			  CL.mkDecl(CL.T_Array(CL.T_Named "size_t",SOME(nDims)),globalVar,NONE),
			  CL.mkDecl(CL.T_Array(CL.T_Named "size_t",SOME(nDims)),localVar,NONE),
			  CL.mkDecl(CL.intTy,numDevicesVar,SOME(CL.I_Exp(CL.E_Int(~1,CL.intTy)))), 
			  CL.mkDecl(CL.T_Array(CL.clDeviceIdTy, SOME(1)), platformsVar, NONE), 
			  CL.mkDecl(CL.intTy,"num_platforms",SOME(CL.I_Exp(CL.E_Int(~1,CL.intTy))))] 
		
		(* Retrieve the platforms *) 
		val platformStm = [CL.mkAssign(CL.E_Var errVar, CL.mkApply("clGetPlatformIDs",
						  [CL.E_Int(10,CL.intTy), 
						   CL.E_UnOp(CL.%&,CL.E_Var platformsVar), 
						   CL.E_UnOp(CL.%&,CL.E_Var numDevicesVar)])),
						   assertStm]
						   
		val devicesStm = [CL.mkAssign(CL.E_Var errVar, CL.mkApply("clGetDeviceIDs",
						  [CL.mkSubscript(CL.E_Var platformsVar,CL.E_Int(0,CL.intTy)),
						   CL.E_Var "CL_DEVICE_TYPE_GPU",
						   CL.E_Int(1,CL.intTy), 
						   CL.E_UnOp(CL.%&,CL.E_Var deviceVar), 
						   CL.E_UnOp(CL.%&,CL.E_Var numDevicesVar)])),
						   assertStm] 
		
		(* Create Context *) 
		val contextStm = [CL.mkAssign(CL.E_Var contextVar, CL.mkApply("clCreateContext",
						  [CL.E_Int(0,CL.intTy), 
						  CL.E_Int(1,CL.intTy),
						  CL.E_UnOp(CL.%&,CL.E_Var deviceVar),
						  CL.E_Var "NULL",
						  CL.E_Var "NULL",
						  CL.E_UnOp(CL.%&,CL.E_Var errVar)])),
						  assertStm]
		
		(* Create Command Queue *) 
		val commandStm = [CL.mkAssign(CL.E_Var cmdVar, CL.mkApply("clCreateCommandQueue",
						  [CL.E_Var contextVar, 
						  CL.E_Var deviceVar,
						  CL.E_Int(0,CL.intTy),
						  CL.E_UnOp(CL.%&,CL.E_Var errVar)])),
						  assertStm]
		
		(* Create Memory Buffers for Strand States and Globals *) 
		val strandSize = CL.mkAssign(CL.E_Var stateSizeVar,CL.mkBinOp(CL.mkApply("sizeof",
									[CL.E_Var tyName]), CL.#*,CL.E_Var numStrandsVar))
		val strandObjects = [CL.mkAssign(CL.E_Var inStateVar, CL.mkApply("malloc", 
										[CL.E_Var stateSizeVar])),
							CL.mkAssign(CL.E_Var outStateVar, CL.mkApply("malloc", 
										[CL.E_Var stateSizeVar]))] 	
										
		val clStrandObjects = [CL.mkAssign(CL.E_Var clInstateVar, CL.mkApply("clCreateBuffer",
								[CL.E_Var contextVar,
							 	CL.E_Var "CL_MEM_READ_WRITE",
							 	CL.E_Var stateSizeVar,
							 	CL.E_Var "NULL",
							 	CL.E_UnOp(CL.%&,CL.E_Var errVar)])),
							 CL.mkAssign(CL.E_Var clOutStateVar, CL.mkApply("clCreateBuffer",
								[CL.E_Var contextVar,
							 	CL.E_Var "CL_MEM_READ_WRITE",
							 	CL.E_Var stateSizeVar,
								CL.E_Var "NULL",
							 	CL.E_UnOp(CL.%&,CL.E_Var errVar)]))]
							 	
	    val clGlobalBuffers = getGlobalDataBuffers(!imgGlobals,3,contextVar,errVar) 
	    
	    
		(* Load the Kernel and Header Files *) 
		val sourceStms = [CL.mkAssign(CL.mkSubscript(CL.E_Var sourcesVar,CL.E_Int(0,CL.intTy)),
									  CL.mkApply(RN.clLoaderFN, [CL.E_Var clFNVar])),
						  CL.mkAssign(CL.mkSubscript(CL.E_Var sourcesVar,CL.E_Int(1,CL.intTy)),
									  CL.mkApply(RN.clLoaderFN, [CL.E_Var headerFNVar]))]
									  
		(* Created Enqueue Statements *)
		val enqueueStm = if nDims = 1 
			then [CL.mkAssign(CL.E_Var errVar, 
							  CL.mkApply("clEnqueueNDRangeKernel", 
									 			[CL.E_Var cmdVar,
									 			 CL.E_Var kernelVar,
									 			 CL.E_Int(1,CL.intTy), 
									 			 CL.E_Var "NULL",
									 			 CL.E_Var globalVar,
									 			 CL.E_Var localVar,
									 			 CL.E_Int(0,CL.intTy),
									 			 CL.E_Var "NULL",
									 			 CL.E_Var "NULL"])),CL.mkCall("clFinish",[CL.E_Var cmdVar])]
			else if nDims = 2  then 
			 [CL.mkAssign(CL.E_Var errVar, 
							CL.mkApply("clEnqueueNDRangeKernel", 
									 			[CL.E_Var cmdVar,
									 			 CL.E_Var kernelVar,
									 			 CL.E_Int(2,CL.intTy), 
									 			 CL.E_Var "NULL",
									 			 CL.E_Var globalVar,
									 			 CL.E_Var localVar,
									 			 CL.E_Int(0,CL.intTy),
									 			 CL.E_Var "NULL",
									 			 CL.E_Var "NULL"])),CL.mkCall("clFinish",[CL.E_Var cmdVar])] 
			else 
			  [CL.mkAssign(CL.E_Var errVar, 
							CL.mkApply("clEnqueueNDRangeKernel", 
									 			[CL.E_Var cmdVar,
									 			 CL.E_Var kernelVar,
									 			 CL.E_Int(3,CL.intTy), 
									 			 CL.E_Var "NULL",
									 			 CL.E_Var globalVar,
									 			 CL.E_Var localVar,
									 			 CL.E_Int(0,CL.intTy),
									 			 CL.E_Var "NULL",
									 			 CL.E_Var "NULL"])),CL.mkCall("clFinish",[CL.E_Var cmdVar])] 
		
		(* Setup up selfOut variable *) 
		val selfOutStm = CL.mkAssign(CL.E_Var outStateVar, CL.mkApply("malloc", [CL.mkBinOp(CL.E_Var numStrandsVar,
									CL.#*, CL.mkApply("sizeof",[CL.E_Var tyName]))])) 
				
		(* Setup Global and Local variables *) 
		
		val globalAndlocalStms = if nDims = 1 then 
			[CL.mkAssign(CL.mkSubscript(CL.E_Var globalVar, CL.E_Int(0,CL.intTy)),
								   CL.mkSubscript(CL.E_Var "size", CL.E_Int(0,CL.intTy))), 
			 CL.mkAssign(CL.mkSubscript(CL.E_Var localVar, CL.E_Int(0,CL.intTy)),
								  CL.E_Var "16")]
		
		
		else if nDims = 2 then 
			[CL.mkAssign(CL.mkSubscript(CL.E_Var globalVar, CL.E_Int(0,CL.intTy)),
								   CL.mkSubscript(CL.E_Var "size", CL.E_Int(0,CL.intTy))), 
			CL.mkAssign(CL.mkSubscript(CL.E_Var globalVar, CL.E_Int(1,CL.intTy)),
								   CL.mkSubscript(CL.E_Var "sizes", CL.E_Int(1,CL.intTy))),
			CL.mkAssign(CL.mkSubscript(CL.E_Var localVar, CL.E_Int(0,CL.intTy)),
								  CL.E_Var "16"),
			CL.mkAssign(CL.mkSubscript(CL.E_Var localVar, CL.E_Int(1,CL.intTy)),
								  CL.E_Var "16")]
								  
		else 
			[CL.mkAssign(CL.mkSubscript(CL.E_Var globalVar, CL.E_Int(0,CL.intTy)),
								   CL.mkSubscript(CL.E_Var "size", CL.E_Int(0,CL.intTy))), 
			CL.mkAssign(CL.mkSubscript(CL.E_Var globalVar, CL.E_Int(1,CL.intTy)),
								   CL.mkSubscript(CL.E_Var "size", CL.E_Int(1,CL.intTy))),
			CL.mkAssign(CL.mkSubscript(CL.E_Var globalVar, CL.E_Int(2,CL.intTy)),
								   CL.mkSubscript(CL.E_Var "size", CL.E_Int(2,CL.intTy))),
			CL.mkAssign(CL.mkSubscript(CL.E_Var localVar, CL.E_Int(0,CL.intTy)),
								  CL.E_Var "16"),
			CL.mkAssign(CL.mkSubscript(CL.E_Var localVar, CL.E_Int(1,CL.intTy)),
								  CL.E_Var "16"),
			CL.mkAssign(CL.mkSubscript(CL.E_Var localVar, CL.E_Int(2,CL.intTy)),
								  CL.E_Var "16")]
		

		
		(* Setup Kernel arguments *) 
		val kernelArguments = [CL.mkAssign(CL.E_Var errVar,CL.mkApply("clSetKernelArg",
							 	[CL.E_Var kernelVar, 
							 	 CL.E_Int(0,CL.intTy),
							 	 CL.mkApply("sizeof",[CL.E_Var "cl_mem"]),
							 	 CL.E_UnOp(CL.%&,CL.E_Var clInstateVar)])), 
							    CL.mkExpStm(CL.mkAssignOp(CL.E_Var errVar, CL.|=,CL.mkApply("clSetKernelArg",
							 	[CL.E_Var kernelVar, 
							 	 CL.E_Int(1,CL.intTy),
							 	 CL.mkApply("sizeof",[CL.E_Var "cl_mem"]),
							 	 CL.E_UnOp(CL.%&,CL.E_Var clOutStateVar)]))), 
							 	  CL.mkExpStm(CL.mkAssignOp(CL.E_Var errVar, CL.|=,CL.mkApply("clSetKernelArg",
							 	[CL.E_Var kernelVar, 
							 	 CL.E_Int(2,CL.intTy),
							 	 CL.mkApply("sizeof",[CL.E_Var "int"]),
							 	 CL.E_UnOp(CL.%&,CL.E_Var "width")])))] 
							 	 
	   val clGlobalArguments = genGlobalArguments(!imgGlobals,3,kernelVar,errVar) 
		
		(* Retrieve output *)
		val outputStm = CL.mkAssign(CL.E_Var errVar, 
							CL.mkApply("clEnqueueReadBuffer", 
									 			[CL.E_Var cmdVar,
									 			 CL.E_Var clOutStateVar, 
									 			 CL.E_Var "CL_TRUE",
									 			 CL.E_Int(0,CL.intTy), 
									 			 CL.E_Var stateSizeVar,
									 			 CL.E_Var outStateVar,
									 			 CL.E_Int(0,CL.intTy),
									 			 CL.E_Var "NULL",
									 			 CL.E_Var "NULL"]))
		
		(* Free all the objects *) 
		val freeStms = [CL.mkCall("clReleaseKernel",[CL.E_Var kernelVar]),
						CL.mkCall("clReleaseProgram",[CL.E_Var programVar ]),
						CL.mkCall("clReleaseCommandQueue",[CL.E_Var cmdVar]),
						CL.mkCall("clReleaseContext",[CL.E_Var contextVar]),
						CL.mkCall("clReleaseMemObject",[CL.E_Var clInstateVar]),
						CL.mkCall("clReleaseMemObject",[CL.E_Var clOutStateVar])]
		
		(* Body put all the statments together *) 
		val body =  delcarations @ platformStm @ devicesStm @ contextStm @ commandStm @ !initially @ [strandSize] @
				   clStrandObjects @ clGlobalBuffers @ sourceStms  @ [selfOutStm] @ globalAndlocalStms @
				   kernelArguments @ clGlobalArguments @ enqueueStm @  [outputStm] @ freeStms
		
		in 
		
	 	CL.D_Func([],CL.voidTy,RN.setupFName,params,CL.mkBlock(body))
		
		end 
		
		
	(* generate the main kernel function for the .cl file *) 
	fun genKernelFun(Strand{name, tyName, state, output, code},nDims) = let
		 val fName = RN.kernelFuncName; 
		 val inState = "strand_in" 
		 val outState = "strand_out" 
	     val params = [
		      CL.PARAM(["__global"], CL.T_Ptr(CL.T_Named tyName), "selfIn"),
		      CL.PARAM(["__global"], CL.T_Ptr(CL.T_Named tyName), "selfOut"), 
		      CL.PARAM(["__global"], CL.intTy, "width")
		    ]
		  val thread_ids = if nDims = 1 
		  	then [CL.mkDecl(CL.intTy, "x", SOME(CL.I_Exp(CL.E_Int(0, CL.intTy)))), 
		  		  CL.mkAssign(CL.E_Var "x",CL.mkApply(RN.getGlobalThreadId,[CL.E_Int(0,CL.intTy)]))]
		  	else 
		  		[CL.mkDecl(CL.intTy, "x", SOME(CL.I_Exp(CL.E_Int(0, CL.intTy)))), 
		  		 CL.mkDecl(CL.intTy, "y", SOME(CL.I_Exp(CL.E_Int(0, CL.intTy)))),
		  		  CL.mkAssign(CL.E_Var "x",  CL.mkApply(RN.getGlobalThreadId,[CL.E_Int(0,CL.intTy)])),
		  		  CL.mkAssign(CL.E_Var "y",CL.mkApply(RN.getGlobalThreadId,[CL.E_Int(1,CL.intTy)]))] 
		  
		  val strandDecl = [CL.mkDecl(CL.T_Named tyName, inState, NONE), 
		  					CL.mkDecl(CL.T_Named tyName, outState,NONE)]
		  val strandObjects  = if nDims = 1 
		  	then [CL.mkAssign(CL.mkSubscript(CL.E_Var "selfIn",CL.E_Str "x"),
		  							 CL.E_Var inState),
		  		  CL.mkAssign(CL.mkSubscript(CL.E_Var "selfOut",CL.E_Str "x"),
		  							 CL.E_Var outState)]
		  	else let 
		  		val index = CL.mkBinOp(CL.mkBinOp(CL.E_Var "y",CL.#*,CL.E_Var "width"),CL.#+,CL.E_Var "x")
		  		in 
		  			[CL.mkAssign(CL.mkSubscript(CL.E_Var "selfIn",index),
		  							CL.E_Var inState), 
		  			 CL.mkAssign(CL.mkSubscript(CL.E_Var "selfOut",index),
		  							CL.E_Var outState)] 
		  		end 
		  val status = CL.mkDecl(CL.intTy, "status", SOME(CL.I_Exp(CL.E_Int(0, CL.intTy))))
		  val strand_init_function = CL.mkCall(RN.strandInit name, [CL.E_Var inState])
		  val local_vars =  thread_ids @ strandDecl @ strandObjects @ [status,strand_init_function]
		  val while_exp = CL.mkBinOp(CL.E_Var "status",CL.#!=, CL.E_Var RN.kStabilize)
		  val while_body = [CL.mkAssign(CL.E_Var "status", CL.mkApply(RN.strandUpdate name,[CL.E_Var inState,CL.E_Var outState])),
		  					CL.mkCall(RN.strandStabilize name,[CL.E_Var inState,CL.E_Var outState]),
		  					CL.mkIfThen(CL.mkBinOp(CL.E_Var "status",CL.#==, CL.E_Var RN.kStabilize),CL.mkBreak)]
		  
		  val whileBlock = [CL.mkWhile(while_exp,CL.mkBlock while_body)]
		  
		  val body = CL.mkBlock(local_vars  @ whileBlock)
		in 
		   CL.D_Func(["__kernel"], CL.voidTy, fName, params, body)
		end
	(* generate a global structure from the globals *) 
	fun genGlobalStruct(globals) = let
		 fun getGlobals(CL.D_Var(_,ty,globalVar,_)::rest) = (ty,globalVar)::getGlobals(rest) 
		   | getGlobals([]) = [] 
		   | getGlobals(_::rest) = getGlobals(rest) 
		 in 
			CL.D_StructDef(getGlobals(globals),RN.globalsTy) 
		  end
      (* generate the table of strand descriptors *)
	fun genStrandTable (ppStrm, strands) = let
	      val nStrands = length strands
	      fun genInit (Strand{name, ...}) = CL.I_Exp(CL.mkUnOp(CL.%&, CL.E_Var(RN.strandDesc name)))
	      fun genInits (_, []) = []
		| genInits (i, s::ss) = (i, genInit s) :: genInits(i+1, ss)
	      fun ppDecl dcl = PrintAsC.output(ppStrm, dcl)
	      in
		ppDecl (CL.D_Var([], CL.int32, RN.numStrands,
		  SOME(CL.I_Exp(CL.E_Int(IntInf.fromInt nStrands, CL.int32)))));
		ppDecl (CL.D_Var([],
		  CL.T_Array(CL.T_Ptr(CL.T_Named RN.strandDescTy), SOME nStrands),
		  RN.strands,
		  SOME(CL.I_Array(genInits (0, strands)))))
	      end

	fun genSrc (baseName, Prog{globals, topDecls, strands, initially,imgGlobals,numDims,oneDim,twoDim,thirdDim,...}) = let
	      val clFileName = OS.Path.joinBaseExt{base=baseName, ext=SOME "cl"}
	      val cFileName = OS.Path.joinBaseExt{base=baseName, ext=SOME "c"}
	      val clOutS = TextIO.openOut clFileName
	      val cOutS = TextIO.openOut cFileName
	      val clppStrm = PrintAsC.new clOutS
	      val cppStrm = PrintAsC.new cOutS
	      fun cppDecl dcl = PrintAsC.output(cppStrm, dcl) 
	      fun clppDecl dcl = PrintAsC.output(clppStrm, dcl)
	      val strands = AtomTable.listItems strands
	      val single_strand as Strand{name, tyName, code, ...}= hd(strands) 
	      in
	    (* Generate the Host file .c *) 
	    cppDecl (CL.D_Verbatim([ "#include <OpenCL/OpenCL.h>", 
								 "#include Diderot/diderot.h"]));
		List.app cppDecl (List.rev (!globals));
	    cppDecl (genGlobalStruct (!globals));
	    cppDecl (genStrandTyDef single_strand);
	    cppDecl (genKernelLoader());
	    List.app cppDecl (List.rev (!topDecls));
	    cppDecl (genHostSetupFunc (single_strand,clFileName,!numDims,initially,imgGlobals,oneDim,twoDim,thirdDim));
	    cppDecl (genHostMain());
	    
	    (* Generate the OpenCl file *)
	    clppDecl (genGlobalStruct (!globals)); 
	    clppDecl (genStrandTyDef single_strand); 
	    List.app clppDecl (!code); 
	    clppDecl (genKernelFun (single_strand,!numDims));
	    
		(*List.app (fn strand => List.app ppDecl (genStrand strand)) strands;
		 genStrandTable (ppStrm, strands); 
		ppDecl (!initially);*) 
		
		PrintAsC.close cppStrm;
		PrintAsC.close clppStrm; 
		TextIO.closeOut cOutS;
		TextIO.closeOut clOutS
	      end

      (* output the code to a file.  The string is the basename of the file, the extension
       * is provided by the target.
       *)
	fun generate (basename, prog as Prog{double, parallel, debug, ...}) = let
	      fun condCons (true, x, xs) = x::xs
		| condCons (false, _, xs) = xs
	    (* generate the C compiler flags *)
	      val cflags = ["-I" ^ Paths.diderotInclude, "-I" ^ Paths.teemInclude]
	      val cflags = condCons (parallel, #pthread Paths.cflags, cflags)
	      val cflags = if debug
		    then #debug Paths.cflags :: cflags
		    else #ndebug Paths.cflags :: cflags
	      val cflags = #base Paths.cflags :: cflags
	    (* generate the loader flags *)
	      val extraLibs = condCons (parallel, #pthread Paths.extraLibs, [])
	      val extraLibs = Paths.teemLinkFlags @  #base Paths.extraLibs :: extraLibs
	      val rtLib = TargetUtil.runtimeName {
		      target = TargetUtil.TARGET_CL,
		      parallel = parallel, double = double, debug = debug
		    }
	      val ldOpts = rtLib :: extraLibs
	      in
		genSrc (basename, prog)
		end
			      
		(*RunCC.compile (basename, cflags);
		RunCC.link (basename, ldOpts)*)


      end

  (* strands *)
    structure Strand =
      struct
	fun define (Prog{strands, ...}, strandId) = let
	      val name = Atom.toString strandId
	      val strand = Strand{
		      name = name,
		      tyName = RN.strandTy name,
		      state = ref [],
		      output = ref NONE,
		      code = ref []
		    }
	      in
		AtomTable.insert strands (strandId, strand);
		strand
	      end

      (* return the strand with the given name *)
	fun lookup (Prog{strands, ...}, strandId) = AtomTable.lookup strands strandId

      (* register the strand-state initialization code.  The variables are the strand
       * parameters.
       *)
	fun init (Strand{name, tyName, code, ...}, params, init) = let
	      val fName = RN.strandInit name
	      val params =
		    CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "selfOut") ::
		      List.map (fn (ToC.V(ty, x)) => CL.PARAM([], ty, x)) params
	      val initFn = CL.D_Func([], CL.voidTy, fName, params, init)
	      in
		code := initFn :: !code
	      end

      (* register a strand method *)
	fun method (Strand{name, tyName, code, ...}, methName, body) = let
	      val fName = concat[name, "_", methName]
	      val params = [
		      CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "selfIn"),
		      CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "selfOut")
		    ]
	      val methFn = CL.D_Func([], CL.int32, fName, params, body)
	      in
		code := methFn :: !code
	      end
		
	fun output (Strand{output, ...}, ty, ToC.V(_, x)) = output := SOME(ty, x)

      end

  end

structure CLBackEnd = CodeGenFn(CLTarget)

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0