Home My Page Projects Code Snippets Project Openings diderot
Summary Activity Tracker Tasks SCM

SCM Repository

[diderot] View of /branches/vis12/src/compiler/c-target/c-target.sml
ViewVC logotype

View of /branches/vis12/src/compiler/c-target/c-target.sml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 2797 - (download) (annotate)
Thu Nov 6 04:28:54 2014 UTC (4 years, 9 months ago) by jhr
File size: 28643 byte(s)
  working on globals
(* c-target.sml
 *
 * COPYRIGHT (c) 2011 The Diderot Project (http://diderot-language.cs.uchicago.edu)
 * All rights reserved.
 *)

structure CTarget : TARGET =
  struct

    structure IL = TreeIL
    structure V = IL.Var
    structure Ty = IL.Ty
    structure CL = CLang
    structure N = CNames
    structure ToC = TreeToC
    structure SU = StrandUtil

    type props = Properties.props

    type var = CL.typed_var
    type exp = CL.exp
    type stm = CL.stm

    datatype strand = Strand of {
        prog : program,
        name : string,
        tyName : string,
        state : var list,
        output : (Ty.ty * CL.var) list, (* the strand's output variables *)
        code : CL.decl list ref
      }

    and program = Prog of {
        props : props,                  (* info about target *)
        inputs : GenInputs.input_desc list ref,
        globals : (CL.ty * string) list ref,
        topDecls : CL.decl list ref,
        strands : strand AtomTable.hash_table,
        nAxes : int option ref,         (* number of axes in initial grid (NONE means collection) *)
        initially : CL.decl ref
      }

    datatype env = ENV of {
        info : env_info,
        vMap : var V.Map.map,
        scope : scope
      }

    and env_info = INFO of {
        prog : program
      }

    and scope
      = NoScope
      | GlobalScope
      | InitiallyScope
      | StrandScope                             (* strand initialization *)
      | MethodScope of StrandUtil.method_name   (* method body; vars are state variables *)

  (* the supprted widths of vectors of reals on the target.  For the GNU vector extensions,
   * the supported sizes are powers of two, but float2 is broken.
   * NOTE: we should also consider the AVX vector hardware, which has 256-bit registers.
   *)
    fun vectorWidths () = if !N.doublePrecision
          then [2, 4, 8]
          else [4, 8]

  (* we support printing in the sequential C target *)
    val supportsPrinting = true

  (* tests for whether various expression forms can appear inline *)
    fun inlineCons n = (n < 2)          (* vectors are inline, but not matrices *)
    val inlineMatrixExp = false         (* can matrix-valued expressions appear inline? *)

  (* TreeIL to target translations *)
    structure Tr =
      struct
        fun fragment (ENV{info, vMap, scope}, blk) = let
              val (vMap, stms) = ToC.trFragment (vMap, blk)
              in
                (ENV{info=info, vMap=vMap, scope=scope}, stms)
              end
(* NOTE: we may be able to simplify the interface to ToC.trBlock! *)
        fun block (ENV{vMap, ...}, blk) = ToC.trBlock (vMap, blk)
        fun free (ENV{vMap, ...}, blk) = ToC.trFree (vMap, blk)
        fun exp (ENV{vMap, ...}, e) = ToC.trExp(vMap, e)
      end

  (* variables *)
    structure Var =
      struct
        fun name (CL.V(_, name)) = name
        fun global (Prog{globals, ...}, gv) = let
              val ty' = ToC.trType(IL.GlobalVar.ty gv)
              val name = "gv_" ^ IL.GlobalVar.name gv
              in
                globals := (ty', name) :: !globals;
                CL.V(ty', name)
              end
        fun param x = CL.V(ToC.trType(V.ty x), V.name x)
      end

  (* environments *)
    structure Env =
      struct
      (* create a new environment *)
        fun new prog = ENV{
                info=INFO{prog = prog},
                vMap = V.Map.empty,
                scope = NoScope
              }
      (* bind a TreeIL varaiable to a target variable *)
        fun bind (ENV{info, vMap, scope}, x, x') = ENV{
                info = info,
                vMap = V.Map.insert(vMap, x, x'),
                scope = scope
              }
      (* define the current translation context *)
        fun setScope (scope, glob, selfIn, selfOut) (ENV{info, vMap, ...}) = ENV{
                info = info,
                vMap = List.foldl
                    (fn ((x, x'), vm) => V.Map.insert(vm, x, x'))
                      vMap [
                          (PseudoVars.global, CL.V(CL.voidTy, glob)),
                          (PseudoVars.selfIn, CL.V(CL.voidTy, selfIn)),
                          (PseudoVars.selfOut, CL.V(CL.voidTy, selfOut))
                        ],
                scope = scope
              }
      (* define the current translation context *)
        val scopeGlobal = setScope (GlobalScope, "glob", "_bogus_", "_bogus_")
        val scopeInitially = setScope (InitiallyScope, "glob", "_bogus_", "_bogus_")
        fun scopeStrand (env as ENV{info=INFO{prog=Prog{props, ...}}, ...}) =
              if Properties.dualState props
                then setScope (StrandScope, "glob", "selfIn", "selfOut") env
                else setScope (StrandScope, "glob", "self", "self") env
        fun scopeMethod (env, name) =
              setScope (MethodScope name, "glob", "selfIn", "selfOut") env
        fun scopeMethod (env as ENV{info=INFO{prog=Prog{props, ...}}, ...}, name) =
              if Properties.dualState props
                then setScope (MethodScope name, "glob", "selfIn", "selfOut") env
                else setScope (MethodScope name, "glob", "self", "self") env
      end

  (* strands *)
    structure Strand =
      struct
        fun define (prog as Prog{strands, ...}, strandId, state) = let
              val name = Atom.toString strandId
            (* the output state variables *)
              val outputVars = let
                    fun cvtOut x = if IL.StateVar.isOutput x
                          then SOME(IL.StateVar.ty x, IL.StateVar.name x)
                          else NONE
                    in
                      List.mapPartial cvtOut state
                    end
            (* the state variables *)
              val state = let
                    fun cvt x = CL.V(ToC.trType(IL.StateVar.ty x), IL.StateVar.name x)
                    in
                      List.map cvt state
                    end
              val strand = Strand{
                      prog = prog,
                      name = name,
                      tyName = N.strandTy name,
                      state = state,
                      output = outputVars,
                      code = ref []
                    }
              in
                AtomTable.insert strands (strandId, strand);
                strand
              end

      (* return the strand with the given name *)
        fun lookup (Prog{strands, ...}, strandId) = AtomTable.lookup strands strandId

      (* register the strand-state initialization code.  The variables are the strand
       * parameters.
       *)
        fun init (Strand{prog=Prog{props, ...}, name, tyName, code, ...}, params, init) = let
              val globTy = CL.T_Ptr(CL.T_Named(N.globalsTy props))
              val fName = N.strandInit name
              val selfParam = if Properties.dualState props
                    then "selfOut"
                    else "self"
              val params =
                    CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), selfParam) ::
                      List.map (fn (CL.V(ty, x)) => CL.PARAM([], ty, x)) params
              val params = if #hasGlobals props
                    then CL.PARAM([], globTy, "glob") :: params
                    else params
              val initFn = CL.D_Func(["static"], CL.voidTy, fName, params, init)
              in
                code := initFn :: !code
              end

      (* register a strand method *)
        fun method (Strand{prog=Prog{props, ...}, name, tyName, code, ...}, methName, body) = let
              val globTy = CL.T_Ptr(CL.T_Named(N.globalsTy props))
              val fName = concat[name, "_", StrandUtil.nameToString methName]
              val stateParams = if Properties.dualState props
                    then [
                        CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "selfIn"),
                        CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "selfOut")
                      ]
                    else [CL.PARAM([], CL.T_Ptr(CL.T_Named tyName), "self")]
              val params = if #hasGlobals props
                    then CL.PARAM([], globTy, "glob") :: stateParams
                    else stateParams
              val resTy = (case methName
                     of StrandUtil.Update => CL.T_Named "StrandStatus_t"
                      | StrandUtil.Stabilize => CL.voidTy
                    (* end case *))
              val methFn = CL.D_Func(["static"], resTy, fName, params, body)
              in
                code := methFn :: !code
              end

      end

  (* programs *)
    structure Program =
      struct
        fun new (tgt : TargetUtil.target_desc, props : StrandUtil.program_prop list) = (
              N.initTargetSpec tgt;
              Prog{
                  props = Properties.mkProps (tgt, props),
                  inputs = ref [],
                  globals = ref [],
                  topDecls = ref [],
                  strands = AtomTable.mkTable (16, Fail "strand table"),
                  nAxes = ref(SOME ~1),
                  initially = ref(CL.D_Comment["missing initially"])
                })
      (* gather the inputs *)
        fun inputs (Prog{inputs, ...}, env, blk) = inputs := GenInputs.gatherInputs blk
      (* register the global initialization part of a program *)
        fun init (Prog{props, topDecls, ...}, init) = if #hasGlobals props
              then let
                val worldTy = CL.T_Ptr(CL.T_Named(N.worldTy props))
                val globTy = CL.T_Ptr(CL.T_Named(N.globalsTy props))
                val wrldV = CL.mkVar "wrld"
              (* the body of the global initializtion code *)
                val initStms = 
                      CL.mkDeclInit(globTy, "glob", CL.mkIndirect(wrldV, "globals")) ::
                      CL.unBlock init @ [CL.mkReturn(SOME(CL.mkVar "false"))]
              (* for libraries, we need to make sure that the inputs are initialized *)
                val initStms = if not(#exec props) andalso #hasInputs props
                      then CL.mkIfThen(
                        CL.mkApply(N.checkDefined props, [wrldV]),
                        CL.mkReturn(SOME(CL.mkBool true))) :: initStms
                      else initStms
                val initFn = CL.D_Func(
                      ["static"], CL.boolTy, N.initGlobals,
                      [CL.PARAM([], worldTy, "wrld")],
                      CL.mkBlock initStms)
                in
                  topDecls := initFn :: !topDecls
                end
              else ()
      (* register the global destruction part of a program *)
        fun free (Prog{props, topDecls, ...}, free) = if (#hasGlobals props)
              then let
                val worldTy = CL.T_Ptr(CL.T_Named(N.worldTy props))
                val globTy = CL.T_Ptr(CL.T_Named(N.globalsTy props))
                val body = CL.mkBlock(
                      CL.mkDeclInit(globTy, "glob", CL.mkIndirect(CL.mkVar "wrld", "globals")) ::
                      CL.unBlock free @ [CL.mkReturn(SOME(CL.mkVar "false"))])
                val freeFn = CL.D_Func(
                      ["static"], CL.boolTy, N.freeGlobals,
                      [CL.PARAM([], worldTy, "wrld")],
                      body)
                in
                  topDecls := freeFn :: !topDecls
                end
              else ()
      (* create and register the initially function for a program *)
        fun initially {
              prog = Prog{props, strands, nAxes, initially, ...},
              iterPrefix : stm list,
              iters : (var * exp * exp) list,
              createPrefix : stm list,
              strand : Atom.atom,
              args : exp list
            } = let
              val name = Atom.toString strand
              val nDims = List.length iters
              val worldTy = CL.T_Ptr(CL.T_Named(N.worldTy props))
              val globTy = CL.T_Ptr(CL.T_Named(N.globalsTy props))
              fun mapi f xs = let
                    fun mapf (_, []) = []
                      | mapf (i, x::xs) = f(i, x) :: mapf(i+1, xs)
                    in
                      mapf (0, xs)
                    end
              val baseInit = mapi (fn (i, (_, e, _)) => (i, CL.I_Exp e)) iters
              val sizeInit = mapi
                    (fn (i, (CL.V(ty, _), lo, hi)) =>
                        (i, CL.I_Exp(CL.mkBinOp(CL.mkBinOp(hi, CL.#-, lo), CL.#+, CL.E_Int(1, ty))))
                    ) iters
            (* code to allocate the world and initial strands *)
              val allocCode = [
                      CL.mkComment["allocate initial block of strands"],
                      CL.mkDecl(CL.T_Array(CL.uint32, SOME nDims), "base", SOME(CL.I_Array baseInit)),
                      CL.mkDecl(CL.T_Array(CL.uint32, SOME nDims), "size", SOME(CL.I_Array sizeInit)),
                      CL.mkIfThen(CL.mkApply(N.allocInitially, [
                          CL.mkVar "wrld",
                          CL.E_Bool(#isArray props),
                          CL.E_Int(IntInf.fromInt nDims, CL.int32),
                          CL.E_Var "base",
                          CL.E_Var "size"
                        ]),
                      (* then *)
                        CL.mkBlock [
(* FIXME: anything else? *)
                            CL.mkReturn(SOME(CL.mkVar "true"))
                          ])
                      (* endif *)
                    ]
            (* create the loop nest for the initially iterations *)
              val indexVar = "ix"
              val strandTy = CL.T_Ptr(CL.T_Named(N.strandTy name))
              fun statePtr inout = CL.mkSubscript(CL.mkIndirect(CL.mkVar "wrld", inout), CL.mkVar indexVar)
              fun mkLoopNest [] = let
                    val globArg = if #hasGlobals props then [CL.mkVar "glob"] else []
                    val initCode = if Properties.dualState props
                          then [
                              CL.mkCall(N.strandInit name,
                                globArg @ statePtr "inState" :: args),
                              CL.mkCall("memcpy", [
                                  statePtr "outState", statePtr "inState",
                                  CL.mkSizeof(CL.T_Named(N.strandTy name))
                                ])
                            ]
                          else [
                              CL.mkCall(N.strandInit name,
                                globArg @ CL.mkUnOp(CL.%&, statePtr "state") :: args)
                            ]
                    in
                      CL.mkBlock(createPrefix @ initCode @ [
                          CL.S_Exp(CL.mkPostOp(CL.mkVar indexVar, CL.^++))
                        ])
                    end
                | mkLoopNest ((CL.V(ty, param), lo, hi)::iters) = let
                    val body = mkLoopNest iters
                    in
                      CL.mkFor(
                        [(ty, param, lo)],
                        CL.mkBinOp(CL.E_Var param, CL.#<=, hi),
                        [CL.mkPostOp(CL.E_Var param, CL.^++)],
                        body)
                    end
              val iterCode = [
                      CL.mkComment["initially"],
                      CL.mkDecl(CL.uint32, indexVar, SOME(CL.I_Exp(CL.E_Int(0, CL.uint32)))),
                      mkLoopNest iters
                    ]
              val body =
                    iterPrefix @
                    allocCode @
                    iterCode @
                    [CL.mkReturn(SOME(CL.mkVar "false"))]
              val body = if #hasGlobals props
                    then CL.mkIfThen (CL.mkApply (N.initGlobals, [CL.mkVar "wrld"]),
                        CL.mkReturn(SOME(CL.mkVar "true"))
                      ) ::
                      CL.mkDeclInit (globTy, "glob", CL.mkIndirect(CL.mkVar "wrld", "globals")) ::
                      body
                    else body
              val initFn = CL.D_Func([], CL.boolTy, N.initially props, [CL.PARAM([], worldTy, "wrld")], CL.mkBlock body)
              in
                nAxes := (if #isArray props then SOME nDims else NONE);
                initially := initFn
              end

      (***** OUTPUT *****)

      (* create the target-specific substitution list *)
        fun mkSubs (props : props, Strand{name, tyName, ...}) = [
                ("CFILE",       OS.Path.joinBaseExt{base= #outBase props, ext= SOME "c"}),
                ("HDRFILE",     OS.Path.joinBaseExt{base= #outBase props, ext= SOME "h"}),
                ("PREFIX",      #namespace props),
                ("SRCFILE",     #srcFile props),
                ("PROG_NAME",   #outBase props),
                ("STRAND",      name),
                ("STRANDTY",    tyName)
              ]

        fun condCons (true, x, xs) = x::xs
          | condCons (false, _, xs) = xs

        fun verbFrag (props : props, parFrag, seqFrag, subs) =
              CL.verbatimDcl [if (#parallel props) then parFrag else seqFrag] subs

        fun runFrag (false, props, subs) =
              verbFrag (props, ParRunFrag.text, SeqRunFrag.text, subs)
          | runFrag (true, props, subs) = 
              verbFrag (props, ParRunNoBSPFrag.text, SeqRunNoBSPFrag.text, subs)

        fun compile (props : props, basename) = let
            (* generate the C compiler flags *)
              val cflags = ["-I" ^ Paths.diderotInclude(), "-I" ^ Paths.teemInclude()]
              val cflags = condCons (#parallel props, #pthread Paths.cflags, cflags)
              val cflags = if #debug props
                    then #debug Paths.cflags :: cflags
                    else #ndebug Paths.cflags :: cflags
              val cflags = #base Paths.cflags :: cflags
              in
                RunCC.compile (basename, cflags)
              end

        fun ldFlags (props : props) = if #exec props
              then let
                val extraLibs = condCons (#parallel props, #pthread Paths.extraLibs, [])
                val extraLibs = Paths.teemLinkFlags() @ #base Paths.extraLibs :: extraLibs
                val rtLib = Properties.runtimeName props
                in
                  rtLib :: extraLibs
                end
              else [Properties.runtimeName props]

        fun genStrand (Strand{prog=Prog{props, ...}, name, tyName, state, code, ...}) = let
            (* the type declaration for the strand's state struct *)
              val selfTyDef = CL.D_StructDef(
                      SOME(concat[#namespace props, "struct_", name]),
                      List.rev (List.map (fn CL.V(ty, x) => (ty, "sv_" ^ x)) state),
                      NONE)
            (* the strand's descriptor object *)
              val descI = let
                    fun fnPtr (ty, f) = CL.I_Exp(CL.mkCast(CL.T_Named ty, CL.mkVar f))
                    in
                      CL.I_Struct[
                          ("name", CL.I_Exp(CL.mkStr name)),
                          ("stateSzb", CL.I_Exp(CL.mkSizeof(CL.T_Named(N.strandTy name)))),
                          ("update", fnPtr("update_method_t", name ^ "_Update")),
                          ("stabilize", fnPtr("stabilize_method_t", name ^ "_Stabilize"))
                        ]
                    end
              val desc = CL.D_Var([], CL.T_Named N.strandDescTy, N.strandDesc name, SOME descI)
              in
                selfTyDef :: List.rev (desc :: !code)
              end

        fun genGlobalStruct (_, []) = []
          | genGlobalStruct (props : props, globals) =
              [CL.D_StructDef(NONE, globals, SOME(#namespace props ^ "Globals_t"))]

      (* generate the struct declaration for the world representation *)
        fun genWorldStruct (Prog{props, ...}, Strand{tyName, ...}) = let
              val extras = if Properties.dualState props
                    then [
                        (CL.T_Ptr(CL.T_Ptr(CL.T_Named tyName)), "inState"),
                        (CL.T_Ptr(CL.T_Ptr(CL.T_Named tyName)), "outState")
                      ]
                    else [
                        (CL.T_Ptr(CL.T_Named tyName),           "state")
                      ]
              val extras = if #hasGlobals props
                    then (CL.T_Ptr(CL.T_Named(N.globalsTy props)), "globals") :: extras
                    else extras
              val extras = (CL.T_Ptr CL.uint8, "status") :: extras
              val extras = if #exec props orelse not(#hasInputs props)
                    then extras
                    else (CL.T_Named(N.definedInpTy props), "definedInp") :: extras
              val extras = if #parallel props
                    then (CL.T_Ptr(CL.T_Named "Diderot_Sched_t"), "sched") :: extras
                    else (CL.T_Named "uint32_t", "numActive") :: extras
              in
                World.genStruct (props, extras)
              end

      (* generate the table of strand descriptors *)
        fun ppStrandTable (ppStrm, strands) = let
              val nStrands = length strands
              fun genInit (Strand{name, ...}) = CL.I_Exp(CL.mkUnOp(CL.%&, CL.E_Var(N.strandDesc name)))
              fun genInits (_, []) = []
                | genInits (i, s::ss) = (i, genInit s) :: genInits(i+1, ss)
              fun ppDecl dcl = PrintAsC.output(ppStrm, dcl)
              in
                ppDecl (CL.D_Var(["static const"], CL.int32, "NumStrands",
                  SOME(CL.I_Exp(CL.E_Int(IntInf.fromInt nStrands, CL.int32)))));
                ppDecl (CL.D_Var([],
                  CL.T_Array(CL.T_Ptr(CL.T_Named N.strandDescTy), SOME nStrands),
                  N.strands,
                  SOME(CL.I_Array(genInits (0, strands)))))
              end

        fun outputLibSrc (baseName, prog as Prog{
                props, inputs, globals, topDecls, strands, nAxes, initially, ...
              }) = let
            (* does the program require barrier synchronization to implement BSP semantics? *)
              val noBSP = Properties.noBSP props
              val [strand as Strand{name, tyName, state, output, ...}] = AtomTable.listItems strands
              val outputs = GenOutput.gen (props, !nAxes) output
              val substitutions = mkSubs (props, strand)
            (* output to C file *)
              val fileName = OS.Path.joinBaseExt{base=baseName, ext=SOME "c"}
              val outS = TextIO.openOut fileName
              val ppStrm = PrintAsC.new outS
              fun ppDecl dcl = PrintAsC.output(ppStrm, dcl)
              in
                ppDecl (CL.verbatimDcl [CHeadFrag.text] substitutions);
                if (#parallel props)
                  then ppDecl (CL.verbatimDcl [CHeadParExtraFrag.text] substitutions)
                  else ();
(* FIXME: factor out these #defines from outputExecSrc and outputLibSrc *)
                if Properties.dualState props
                  then ppDecl (CL.D_Verbatim ["#define DIDEROT_DUAL_STATE\n"])
                  else ();
                if not(#hasGlobals props)
                  then ppDecl (CL.D_Verbatim ["#define DIDEROT_NO_GLOBALS\n"])
                  else ();
                if not(#hasInputs props)
                  then ppDecl (CL.D_Verbatim ["#define DIDEROT_NO_INPUTS\n"])
                  else ();
                List.app ppDecl (GenInputs.genDefinedInpStruct (props, !inputs));
                List.app ppDecl (genGlobalStruct (props, !globals));
                ppDecl (genWorldStruct(prog, strand));
                List.app ppDecl (GenInputs.genInputFuns(props, !inputs));
                List.app ppDecl (!topDecls);
                List.app ppDecl (genStrand strand);
                List.app ppDecl outputs;
                ppStrandTable (ppStrm, [strand]);
                ppDecl (CL.verbatimDcl [CBodyFrag.text] substitutions);
                ppDecl (CL.verbatimDcl [InitFrag.text] substitutions);
                ppDecl (CL.verbatimDcl [AllocFrag.text] substitutions);
                ppDecl (!initially);
                ppDecl (runFrag (noBSP, props, substitutions));
                ppDecl (CL.verbatimDcl [ShutdownFrag.text] substitutions);
                PrintAsC.close ppStrm;
                TextIO.closeOut outS
              end

        fun generateLib (prog as Prog{props, inputs, strands, ...}) = let
              val {outDir, outBase, exec, double, parallel, debug, ...} = props
              val basename = OS.Path.joinDirFile{dir=outDir, file=outBase}
              val [Strand{state, output, ...}] = AtomTable.listItems strands
              in
              (* generate the library .h file *)
                GenLibraryInterface.gen {
                    props = props,
                    rt = if #parallel props
                      then SOME LibInterfaceParFrag.text
                      else NONE,
                    inputs = !inputs,
                    outputs = output
                  };
              (* *)
                outputLibSrc (basename, prog);
              (* compile and link *)
                compile (props, basename);
                RunCC.linkLib (basename, ldFlags props)
              end

        fun outputExecSrc (baseName, prog) = let
              val Prog{
                      props,  inputs, globals, topDecls, strands, nAxes, initially, ...
                    } = prog
            (* does the program require barrier synchronization to implement BSP semantics? *)
              val noBSP = Properties.noBSP props
              val [strand as Strand{name, tyName, state, output, ...}] = AtomTable.listItems strands
              val outputs = GenOutput.gen (props, !nAxes) output
              val substitutions =
                    ("DIDEROT_FLOAT_PRECISION", Properties.floatPrecisionDef props) ::
                    ("DIDEROT_INT_PRECISION", Properties.intPrecisionDef props) ::
                    ("DIDEROT_TARGET", Properties.targetDef props) ::
                    mkSubs (props, strand)
              val fileName = OS.Path.joinBaseExt{base=baseName, ext=SOME "c"}
              val outS = TextIO.openOut fileName
              val ppStrm = PrintAsC.new outS
              fun ppDecl dcl = PrintAsC.output(ppStrm, dcl)
              in
                ppDecl (CL.verbatimDcl [ExecHdrFrag.text] substitutions);
                if (#parallel props)
                  then ppDecl (CL.verbatimDcl [CHeadParExtraFrag.text] substitutions)
                  else ();
                if Properties.dualState props
                  then ppDecl (CL.D_Verbatim ["#define DIDEROT_DUAL_STATE\n"])
                  else ();
                if not(#hasGlobals props)
                  then ppDecl (CL.D_Verbatim ["#define DIDEROT_NO_GLOBALS\n"])
                  else ();
                if not(#hasInputs props)
                  then ppDecl (CL.D_Verbatim ["#define DIDEROT_NO_INPUTS\n"])
                  else ();
                List.app ppDecl (genGlobalStruct (props, !globals));
                ppDecl (genWorldStruct(prog, strand));
                List.app ppDecl (GenInputs.genInputsStruct (props, !inputs));
                List.app ppDecl (!topDecls);
                List.app ppDecl (GenInputs.genExecInputFuns (props, !inputs));
                List.app ppDecl (genStrand strand);
                List.app ppDecl outputs;
                ppStrandTable (ppStrm, [strand]);
                ppDecl (CL.verbatimDcl [InitFrag.text] substitutions);
                ppDecl (CL.verbatimDcl [AllocFrag.text] substitutions);
                ppDecl (!initially);
                ppDecl (runFrag (noBSP, props, substitutions));
                ppDecl (CL.verbatimDcl [ShutdownFrag.text] substitutions);
                ppDecl (verbFrag (props, ParMainFrag.text, SeqMainFrag.text, substitutions));
                PrintAsC.close ppStrm;
                TextIO.closeOut outS
              end

      (* output the code to a file.  The string is the basename of the file, the extension
       * is provided by the target.
       *)
        fun generateExec (prog as Prog{props, ...}) = let
              val {outDir, outBase, exec, double, parallel, debug, ...} = props
              val basename = OS.Path.joinDirFile{dir=outDir, file=outBase}
              in
                outputExecSrc (basename, prog);
                compile (props, basename);
                RunCC.linkExec (basename, ldFlags props)
              end

        fun generate (prog as Prog{props, globals, topDecls, ...}) = (
              globals := List.rev (!globals);
              topDecls := List.rev (!topDecls);
              if #exec props
                then generateExec prog
                else generateLib prog)

      end

  end

structure CBackEnd = CodeGenFn(CTarget)

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0