--- branches/vis12/src/compiler/mid-il/check-mid-il.sml 2013/04/06 13:47:29 2344 +++ branches/vis12/src/compiler/mid-il/check-mid-il.sml 2013/04/06 13:55:42 2345 @@ -26,105 +26,105 @@ (* Return the signature of a MidIL operator. *) fun sigOf rator = (case rator - of Op.Add ty => (ty, [ty, ty]) - | Op.Sub ty => (ty, [ty, ty]) - | Op.Mul ty => (ty, [ty, ty]) - | Op.Div ty => (ty, [ty, ty]) - | Op.Neg ty => (ty, [ty]) - | Op.Abs ty => (ty, [ty]) - | Op.LT ty => (Ty.BoolTy, [ty, ty]) - | Op.LTE ty => (Ty.BoolTy, [ty, ty]) - | Op.EQ ty => (Ty.BoolTy, [ty, ty]) - | Op.NEQ ty => (Ty.BoolTy, [ty, ty]) - | Op.GT ty => (Ty.BoolTy, [ty, ty]) - | Op.GTE ty => (Ty.BoolTy, [ty, ty]) - | Op.Not => (Ty.BoolTy, [Ty.BoolTy]) - | Op.Max => (Ty.realTy, [Ty.realTy, Ty.realTy]) - | Op.Min => (Ty.realTy, [Ty.realTy, Ty.realTy]) - | Op.Clamp ty => (ty, [ty, ty, ty]) - | Op.Lerp ty => (ty, [ty, ty, Ty.realTy]) - | Op.Dot d => (Ty.realTy, [Ty.vecTy d, Ty.vecTy d]) - | Op.MulVecMat(d1, d2) => (Ty.vecTy d2, [Ty.vecTy d1, Ty.TensorTy[d1, d2]]) - | Op.MulMatVec(d1, d2) => (Ty.vecTy d1, [Ty.TensorTy[d1, d2], Ty.vecTy d2]) - | Op.MulMatMat(d1, d2, d3) => (Ty.TensorTy[d1, d3], [Ty.TensorTy[d1, d2], Ty.TensorTy[d2, d3]]) - | Op.MulVecTen3(d1, d2, d3) => (Ty.TensorTy[d2, d3], [Ty.vecTy d1, Ty.TensorTy[d1, d2, d3]]) - | Op.MulTen3Vec(d1, d2, d3) => (Ty.TensorTy[d1, d2], [Ty.TensorTy[d1, d2, d3], Ty.vecTy d3]) - | Op.ColonMul(ty1 as Ty.TensorTy dd1, ty2 as Ty.TensorTy(d21::d22::dd2)) => let - fun last2 ([d1, d2], prefix) = (prefix, d1, d2) - | last2 (d::dd, prefix) = last2(dd, d::prefix) - | last2 _ = raise Fail("sigOf: invalid operator " ^ Op.toString rator) - val (prefix, d11, d12) = last2 (dd1, []) - in - if (d11 <> d21) orelse (d12 <> d22) - then raise Fail("sigOf: invalid operator " ^ Op.toString rator) - else (Ty.TensorTy(List.revAppend(prefix, dd2)), [ty1, ty2]) - end - | Op.Cross => (vec3Ty, [vec3Ty, vec3Ty]) - | Op.Norm(ty as Ty.TensorTy _) => (Ty.realTy, [ty]) - | Op.Normalize d => (Ty.vecTy d, [Ty.vecTy d]) - | Op.Scale(ty as Ty.TensorTy(_::_)) => (ty, [Ty.realTy, ty]) - | Op.PrincipleEvec _ => raise Fail "Op.PrincipleEvec unimplemented" + of Op.Add ty => (ty, [ty, ty]) + | Op.Sub ty => (ty, [ty, ty]) + | Op.Mul ty => (ty, [ty, ty]) + | Op.Div ty => (ty, [ty, ty]) + | Op.Neg ty => (ty, [ty]) + | Op.Abs ty => (ty, [ty]) + | Op.LT ty => (Ty.BoolTy, [ty, ty]) + | Op.LTE ty => (Ty.BoolTy, [ty, ty]) + | Op.EQ ty => (Ty.BoolTy, [ty, ty]) + | Op.NEQ ty => (Ty.BoolTy, [ty, ty]) + | Op.GT ty => (Ty.BoolTy, [ty, ty]) + | Op.GTE ty => (Ty.BoolTy, [ty, ty]) + | Op.Not => (Ty.BoolTy, [Ty.BoolTy]) + | Op.Max => (Ty.realTy, [Ty.realTy, Ty.realTy]) + | Op.Min => (Ty.realTy, [Ty.realTy, Ty.realTy]) + | Op.Clamp ty => (ty, [ty, ty, ty]) + | Op.Lerp ty => (ty, [ty, ty, Ty.realTy]) + | Op.Dot d => (Ty.realTy, [Ty.vecTy d, Ty.vecTy d]) + | Op.MulVecMat(d1, d2) => (Ty.vecTy d2, [Ty.vecTy d1, Ty.TensorTy[d1, d2]]) + | Op.MulMatVec(d1, d2) => (Ty.vecTy d1, [Ty.TensorTy[d1, d2], Ty.vecTy d2]) + | Op.MulMatMat(d1, d2, d3) => (Ty.TensorTy[d1, d3], [Ty.TensorTy[d1, d2], Ty.TensorTy[d2, d3]]) + | Op.MulVecTen3(d1, d2, d3) => (Ty.TensorTy[d2, d3], [Ty.vecTy d1, Ty.TensorTy[d1, d2, d3]]) + | Op.MulTen3Vec(d1, d2, d3) => (Ty.TensorTy[d1, d2], [Ty.TensorTy[d1, d2, d3], Ty.vecTy d3]) + | Op.ColonMul(ty1 as Ty.TensorTy dd1, ty2 as Ty.TensorTy(d21::d22::dd2)) => let + fun last2 ([d1, d2], prefix) = (prefix, d1, d2) + | last2 (d::dd, prefix) = last2(dd, d::prefix) + | last2 _ = raise Fail("sigOf: invalid operator " ^ Op.toString rator) + val (prefix, d11, d12) = last2 (dd1, []) + in + if (d11 <> d21) orelse (d12 <> d22) + then raise Fail("sigOf: invalid operator " ^ Op.toString rator) + else (Ty.TensorTy(List.revAppend(prefix, dd2)), [ty1, ty2]) + end + | Op.Cross => (vec3Ty, [vec3Ty, vec3Ty]) + | Op.Norm(ty as Ty.TensorTy _) => (Ty.realTy, [ty]) + | Op.Normalize d => (Ty.vecTy d, [Ty.vecTy d]) + | Op.Scale(ty as Ty.TensorTy(_::_)) => (ty, [Ty.realTy, ty]) + | Op.PrincipleEvec _ => raise Fail "Op.PrincipleEvec unimplemented" | Op.EigenVecs2x2 => eigenSig 2 | Op.EigenVecs3x3 => eigenSig 3 | Op.EigenVals2x2 => (Ty.SeqTy(Ty.realTy, 2), [Ty.TensorTy[2,2]]) | Op.EigenVals3x3 => (Ty.SeqTy(Ty.realTy, 3), [Ty.TensorTy[3,3]]) - | Op.Identity d => (Ty.TensorTy[d,d], []) - | Op.Zero ty => (ty, []) - | Op.Trace d => (Ty.realTy, [Ty.TensorTy[d, d]]) - | Op.Transpose(d1, d2) => (Ty.TensorTy[d2, d1], [Ty.TensorTy[d1, d2]]) + | Op.Identity d => (Ty.TensorTy[d,d], []) + | Op.Zero ty => (ty, []) + | Op.Trace d => (Ty.realTy, [Ty.TensorTy[d, d]]) + | Op.Transpose(d1, d2) => (Ty.TensorTy[d2, d1], [Ty.TensorTy[d1, d2]]) | Op.Select(ty as Ty.TupleTy tys, i) => (List.nth(tys, i-1), [ty]) - | Op.Index(ty as Ty.TensorTy[d], _) => (Ty.realTy, [ty]) - | Op.Index(ty as Ty.SeqTy(elemTy, _), _) => (elemTy, [ty]) - | Op.Subscript(ty as Ty.TensorTy dd) => (Ty.realTy, ty :: List.map (fn _ => Ty.intTy) dd) - | Op.Subscript(ty as Ty.SeqTy(elemTy, d)) => (elemTy, [ty, Ty.intTy]) - | Op.Subscript(ty as Ty.DynSeqTy(elemTy)) => (elemTy, [ty, Ty.intTy]) + | Op.Index(ty as Ty.TensorTy[d], _) => (Ty.realTy, [ty]) + | Op.Index(ty as Ty.SeqTy(elemTy, _), _) => (elemTy, [ty]) + | Op.Subscript(ty as Ty.TensorTy dd) => (Ty.realTy, ty :: List.map (fn _ => Ty.intTy) dd) + | Op.Subscript(ty as Ty.SeqTy(elemTy, d)) => (elemTy, [ty, Ty.intTy]) + | Op.Subscript(ty as Ty.DynSeqTy(elemTy)) => (elemTy, [ty, Ty.intTy]) | Op.MkDynamic(ty, n) => (Ty.DynSeqTy ty, [Ty.SeqTy(ty, n)]) | Op.Prepend ty => (Ty.DynSeqTy ty, [ty, Ty.DynSeqTy ty]) | Op.Append ty => (Ty.DynSeqTy ty, [Ty.DynSeqTy ty, ty]) | Op.Concat ty => (Ty.DynSeqTy ty, [Ty.DynSeqTy ty, Ty.DynSeqTy ty]) | Op.Length ty => (Ty.intTy, [Ty.DynSeqTy ty]) - | Op.Ceiling d => (Ty.vecTy d, [Ty.vecTy d]) - | Op.Floor d => (Ty.vecTy d, [Ty.vecTy d]) - | Op.Round d => (Ty.vecTy d, [Ty.vecTy d]) - | Op.Trunc d => (Ty.vecTy d, [Ty.vecTy d]) - | Op.IntToReal => (Ty.realTy, [Ty.intTy]) - | Op.RealToInt 1 => (Ty.IntTy, [Ty.realTy]) - | Op.RealToInt d => (Ty.SeqTy(Ty.IntTy, d), [Ty.TensorTy[d]]) + | Op.Ceiling d => (Ty.vecTy d, [Ty.vecTy d]) + | Op.Floor d => (Ty.vecTy d, [Ty.vecTy d]) + | Op.Round d => (Ty.vecTy d, [Ty.vecTy d]) + | Op.Trunc d => (Ty.vecTy d, [Ty.vecTy d]) + | Op.IntToReal => (Ty.realTy, [Ty.intTy]) + | Op.RealToInt 1 => (Ty.IntTy, [Ty.realTy]) + | Op.RealToInt d => (Ty.SeqTy(Ty.IntTy, d), [Ty.TensorTy[d]]) (* FIXME: the type of RealToInt should be - | Op.RealToInt d => (Ty.SeqTy(Ty.IntTy, d), [Ty.SeqTy(Ty.realTy, d)]) + | Op.RealToInt d => (Ty.SeqTy(Ty.IntTy, d), [Ty.SeqTy(Ty.realTy, d)]) *) - | Op.VoxelAddress(info, offset) => let - val dim = ImageInfo.dim info - in - (Ty.AddrTy info, Ty.ImageTy info :: List.tabulate(dim, fn _ => Ty.intTy)) - end - | Op.LoadVoxels(info, n) => (Ty.vecTy n, [Ty.AddrTy info]) - | Op.PosToImgSpace info => let - val dim = ImageInfo.dim info - in - (Ty.vecTy dim, [Ty.ImageTy info, Ty.vecTy dim]) - end - | Op.TensorToWorldSpace(info, ty) => (ty, [Ty.ImageTy info, ty]) - | Op.EvalKernel(d, _, _) => (Ty.vecTy d, [Ty.vecTy d]) - | Op.Inside(info, _) => (Ty.BoolTy, [Ty.vecTy(ImageInfo.dim info), Ty.ImageTy info]) - | Op.LoadSeq(ty, _) => (ty, []) - | Op.LoadImage(ty, _, _) => (ty, []) - | Op.Input(Inputs.INP{ty, ...}) => (ty, []) + | Op.VoxelAddress(info, offset) => let + val dim = ImageInfo.dim info + in + (Ty.AddrTy info, Ty.ImageTy info :: List.tabulate(dim, fn _ => Ty.intTy)) + end + | Op.LoadVoxels(info, n) => (Ty.vecTy n, [Ty.AddrTy info]) + | Op.PosToImgSpace info => let + val dim = ImageInfo.dim info + in + (Ty.vecTy dim, [Ty.ImageTy info, Ty.vecTy dim]) + end + | Op.TensorToWorldSpace(info, ty) => (ty, [Ty.ImageTy info, ty]) + | Op.EvalKernel(d, _, _) => (Ty.vecTy d, [Ty.vecTy d]) + | Op.Inside(info, _) => (Ty.BoolTy, [Ty.vecTy(ImageInfo.dim info), Ty.ImageTy info]) + | Op.LoadSeq(ty, _) => (ty, []) + | Op.LoadImage(ty, _, _) => (ty, []) + | Op.Input(Inputs.INP{ty, ...}) => (ty, []) | Op.Print tys => (Ty.TupleTy[], tys) - | _ => raise Fail("sigOf: invalid operator " ^ Op.toString rator) - (* end case *)) + | _ => raise Fail("sigOf: invalid operator " ^ Op.toString rator) + (* end case *)) fun typeOfCons (_, []) = false | typeOfCons (Ty.SeqTy(ty, n), tys) = List.all (fn ty' => Ty.same(ty, ty')) tys andalso (List.length tys = n) | typeOfCons (expectedTy, tys as ty1::_) = - if List.all (fn ty => Ty.same(ty1, ty)) tys - then (case (expectedTy, ty1) - of (Ty.SeqTy(_, n), Ty.IntTy) => (n = List.length tys) - | (Ty.TensorTy dd, Ty.TensorTy dd') => (dd = List.length tys :: dd') - | _ => false - (* end case *)) - else false + if List.all (fn ty => Ty.same(ty1, ty)) tys + then (case (expectedTy, ty1) + of (Ty.SeqTy(_, n), Ty.IntTy) => (n = List.length tys) + | (Ty.TensorTy dd, Ty.TensorTy dd') => (dd = List.length tys :: dd') + | _ => false + (* end case *)) + else false end
Click to toggle
does not end with </html> tag
does not end with </body> tag
The output has ended thus: : dd') + | _ => false + (* end case *)) + else false end