SCM Repository
[diderot] / branches / vis12 / src / compiler / typechecker / typechecker.sml |
View of /branches/vis12/src/compiler/typechecker/typechecker.sml
Parent Directory
|
Revision Log
Revision 2823 -
(download)
(annotate)
Sun Nov 9 03:57:35 2014 UTC (6 years, 2 months ago) by jhr
File size: 58172 byte(s)
Sun Nov 9 03:57:35 2014 UTC (6 years, 2 months ago) by jhr
File size: 58172 byte(s)
new unreachable code pruning; checks for missing strands/initially (the parser prevents these errors currently, but future language evolution may change that)
(* typechecker.sml * * COPYRIGHT (c) 2014 The Diderot Project (http://diderot-language.cs.uchicago.edu) * All rights reserved. * * TODO: * prune unreachable code?? (see simplify/simplify.sml) * error recovery so that we can detect multiple errors in a single compile * check that the args of strand creation have the same type and number as the params *) structure Typechecker : sig val check : Error.err_stream -> ParseTree.program -> AST.program end = struct structure BV = BasisVars structure PT = ParseTree structure Ty = Types structure TU = TypeUtil structure U = Util (* exception to abort typechecking when we hit an error. Eventually, we should continue * checking for more errors and not use this. *) exception TypeError (* variable properties to support unused variable warning *) val {getFn=isUsed, setFn=markUsed} = Var.newFlag() val {setFn=(setLoc : AST.var * Error.location -> unit), getFn=getLoc, ...} = Var.newProp(fn x => raise Fail("no location for " ^ Var.nameOf x)) datatype scope = GlobalScope | FunctionScope of Ty.ty * Atom.atom | StrandScope | MethodScope of StrandUtil.method_name | InitScope fun scopeToString GlobalScope = "global scope" | scopeToString (FunctionScope(_, f)) = "function " ^ Atom.toString f | scopeToString StrandScope = "strand initialization" | scopeToString (MethodScope m) = "method " ^ StrandUtil.nameToString m | scopeToString InitScope = "initialization" type env = { scope : scope, (* current scope *) bindings : Error.location AtomMap.map, (* map from atoms to innermost binding location *) env : Env.env (* variable environment *) } type context = Error.err_stream * Error.span (* start a new scope *) fun functionScope ({scope, bindings, env}, ty, f) = {scope=FunctionScope(ty, f), bindings=AtomMap.empty, env=env} fun strandScope {scope, bindings, env} = {scope=StrandScope, bindings=AtomMap.empty, env=env} fun methodScope ({scope, bindings, env}, name) = {scope=MethodScope name, bindings=AtomMap.empty, env=env} fun initScope {scope, bindings, env} = {scope=InitScope, bindings=AtomMap.empty, env=env} fun blockScope {scope, bindings, env} = {scope=scope, bindings=AtomMap.empty, env=env} fun inStrand {scope=StrandScope, bindings, env} = true | inStrand {scope=MethodScope _, ...} = true | inStrand _ = false fun insertStrand ({scope, bindings, env}, cxt, s as AST.Strand{name, ...}) = { scope=scope, bindings = AtomMap.insert(bindings, name, Error.location cxt), env=Env.insertStrand(env, s) } fun insertFunc ({scope, bindings, env}, cxt, f, f') = let val loc = Error.location cxt in setLoc(f', loc); { scope=scope, bindings = AtomMap.insert(bindings, f, loc), env=Env.insertFunc(env, f, Env.UserFun f') } end fun insertLocal ({scope, bindings, env}, cxt, x, x') = let val loc = Error.location cxt in setLoc(x', loc); { scope=scope, bindings = AtomMap.insert(bindings, x, loc), env=Env.insertLocal(env, x, x') } end fun insertGlobal ({scope, bindings, env}, cxt, x, x') = let val loc = Error.location cxt in setLoc(x', loc); { scope=scope, bindings = AtomMap.insert(bindings, x, loc), env=Env.insertGlobal(env, x, x') } end fun withContext ((errStrm, _), {span, tree}) = ((errStrm, span), tree) fun withEnvAndContext (env, (errStrm, _), {span, tree}) = (env, (errStrm, span), tree) datatype token = S of string | A of Atom.atom | V of AST.var | TY of Types.ty | TYS of Types.ty list local fun tysToString tys = String.concat[ "(", String.concatWith " * " (List.map TU.toString tys), ")" ] fun tok2str (S s) = s | tok2str (A a) = concat["'", Atom.toString a, "'"] | tok2str (V x) = concat["'", Var.nameOf x, "'"] | tok2str (TY ty) = TU.toString ty | tok2str (TYS []) = "()" | tok2str (TYS[ty]) = TU.toString ty | tok2str (TYS tys) = tysToString tys in fun warn ((errStrm, span), toks) = Error.warningAt(errStrm, span, List.map tok2str toks) fun err ((errStrm, span), toks) = ( Error.errorAt(errStrm, span, List.map tok2str toks); (* FIXME: add error recovery *) raise TypeError) end (* local *) (* check for redefinition of an identifier in the same scope *) (* TODO: check for shadowing too? *) fun checkForRedef (env : env, cxt : context, x) = (case AtomMap.find(#bindings env, x) of SOME loc => err (cxt, [ S "redefinition of ", A x, S ", previous definition at ", S(Error.locToString loc) ]) | NONE => () (* end case *)) val realZero = AST.E_Lit(Literal.Float(FloatLit.zero true)) (* check a differentiation level, which must be >= 0 *) fun checkDiff (cxt, k) = if (k < 0) then err (cxt, [S "differentiation must be >= 0"]) else Ty.DiffConst(IntInf.toInt k) (* check a sequence dimension, which must be > 0 *) fun checkSeqDim (cxt, d) = if (d < 0) then err (cxt, [S "invalid dimension; must be positive"]) else Ty.DimConst(IntInf.toInt d) (* check a dimension, which must be 1, 2 or 3 *) fun checkDim (cxt, d) = if (d < 1) orelse (3 < d) then err (cxt, [S "invalid dimension; must be 1, 2, or 3"]) else Ty.DimConst(IntInf.toInt d) (* check a shape *) fun checkShape (cxt, shape) = let fun checkDim d = if (d <= 1) then err (cxt, [S "invalid tensor-shape dimension; must be > 1"]) else Ty.DimConst(IntInf.toInt d) in Ty.Shape(List.map checkDim shape) end (* check the well-formedness of a type and translate it to an AST type *) fun checkTy (cxt, ty) = (case ty of PT.T_Mark m => checkTy(withContext(cxt, m)) | PT.T_Bool => Ty.T_Bool | PT.T_Int => Ty.T_Int | PT.T_Real => Ty.realTy | PT.T_String => Ty.T_String | PT.T_Vec n => (* NOTE: the parser guarantees that 2 <= n <= 4 *) Ty.vecTy(IntInf.toInt n) | PT.T_Kernel k => Ty.T_Kernel(checkDiff(cxt, k)) | PT.T_Field{diff, dim, shape} => Ty.T_Field{ diff = checkDiff (cxt, diff), dim = checkDim (cxt, dim), shape = checkShape (cxt, shape) } | PT.T_Tensor shape => Ty.T_Tensor(checkShape(cxt, shape)) | PT.T_Image{dim, shape} => Ty.T_Image{ dim = checkDim (cxt, dim), shape = checkShape (cxt, shape) } | PT.T_Seq(ty, dim) => let val ty = checkTy(cxt, ty) in if TU.isFixedSizeType ty then Ty.T_Sequence(ty, checkSeqDim (cxt, dim)) else err(cxt, [S "elements of sequence types must be fixed-size types"]) end | PT.T_DynSeq ty => let val ty = checkTy(cxt, ty) in if TU.isFixedSizeType ty then Ty.T_DynSequence(ty) else err(cxt, [S "elements of sequence types must be fixed-size types"]) end (* end case *)) fun checkLit lit = (case lit of (Literal.Int _) => (AST.E_Lit lit, Ty.T_Int) | (Literal.Float _) => (AST.E_Lit lit, Ty.realTy) | (Literal.String s) => (AST.E_Lit lit, Ty.T_String) | (Literal.Bool _) => (AST.E_Lit lit, Ty.T_Bool) (* end case *)) fun coerceExp (Ty.T_Tensor(Ty.Shape[]), Ty.T_Int, AST.E_Lit(Literal.Int n)) = AST.E_Lit(Literal.Float(FloatLit.fromInt n)) | coerceExp (ty1, ty2, e) = AST.E_Coerce{srcTy=ty2, dstTy=ty1, e=e} fun coerceType (dstTy, srcTy, e) = (case U.matchType(dstTy, srcTy) of U.EQ => SOME e | U.COERCE => SOME(coerceExp (dstTy, srcTy, e)) | U.FAIL => NONE (* end case *)) fun realType (ty as Ty.T_Tensor(Ty.Shape[])) = ty | realType (ty as Ty.T_Int) = Ty.realTy | realType ty = ty (* resolve overloading: we use a simple scheme that selects the first operator in the * list that matches the argument types. *) fun resolveOverload (_, rator, _, _, []) = raise Fail(concat[ "resolveOverload: \"", Atom.toString rator, "\" has no candidates" ]) | resolveOverload (cxt, rator, argTys, args, candidates) = let (* FIXME: we could be more efficient by just checking for coercion matchs the first pass * and remembering those that are not pure EQ matches. *) (* try to match candidates while allowing type coercions *) fun tryMatchCandidates [] = err(cxt, [ S "unable to resolve overloaded operator ", A rator, S "\n", S " argument type is: ", TYS argTys, S "\n" ]) | tryMatchCandidates (x::xs) = let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf x) in case U.tryMatchArgs (domTy, args, argTys) of SOME args' => (AST.E_Apply(x, tyArgs, args', rngTy), rngTy) | NONE => tryMatchCandidates xs (* end case *) end fun tryCandidates [] = tryMatchCandidates candidates | tryCandidates (x::xs) = let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf x) in if U.tryEqualTypes(domTy, argTys) then (AST.E_Apply(x, tyArgs, args, rngTy), rngTy) else tryCandidates xs end in tryCandidates candidates end (* typecheck an expression and translate it to AST *) fun checkExpr (env : env, cxt, e) = (case e of PT.E_Mark m => checkExpr (withEnvAndContext (env, cxt, m)) | PT.E_Var x => (case Env.findVar (#env env, x) of SOME x' => ( markUsed (x', true); (AST.E_Var x', Var.monoTypeOf x')) | NONE => err(cxt, [S "undeclared variable ", A x]) (* end case *)) | PT.E_Lit lit => checkLit lit | PT.E_OrElse(e1, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in case (ty1, ty2) of (Ty.T_Bool, Ty.T_Bool) => (AST.E_Cond(e1', AST.E_Lit(Literal.Bool true), e2', Ty.T_Bool), Ty.T_Bool) | _ => err (cxt, [S "arguments to \"||\" must have bool type"]) (* end case *) end | PT.E_AndAlso(e1, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in case (ty1, ty2) of (Ty.T_Bool, Ty.T_Bool) => (AST.E_Cond(e1', e2', AST.E_Lit(Literal.Bool false), Ty.T_Bool), Ty.T_Bool) | _ => err (cxt, [S "arguments to \"&&\" must have bool type"]) (* end case *) end | PT.E_Cond(e1, cond, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in case checkExpr(env, cxt, cond) of (cond', Ty.T_Bool) => if U.equalType(ty1, ty2) then (AST.E_Cond(cond', e1', e2', ty1), ty1) else err (cxt, [ S "types do not match in conditional expression\n", S " true branch: ", TY ty1, S "\n", S " false branch: ", TY ty2 ]) | (_, ty') => err (cxt, [S "expected bool type, but found ", TY ty']) (* end case *) end | PT.E_BinOp(e1, rator, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in if Atom.same(rator, BasisNames.op_dot) (* we have to handle inner product as a special case, because out type * system cannot express the constraint that the type is * ALL[sigma1, d1, sigma2] . tensor[sigma1, d1] * tensor[d1, sigma2] -> tensor[sigma1, sigma2] *) then (case (TU.prune ty1, TU.prune ty2) of (Ty.T_Tensor(s1 as Ty.Shape(dd1 as _::_)), Ty.T_Tensor(s2 as Ty.Shape(d2::dd2))) => let val (dd1, d1) = let fun splitLast (prefix, [d]) = (List.rev prefix, d) | splitLast (prefix, d::dd) = splitLast (d::prefix, dd) | splitLast (_, []) = raise Fail "impossible" in splitLast ([], dd1) end val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf BV.op_inner) val resTy = Ty.T_Tensor(Ty.Shape(dd1@dd2)) in if U.equalDim(d1, d2) andalso U.equalTypes(domTy, [ty1, ty2]) andalso U.equalType(rngTy, resTy) then (AST.E_Apply(BV.op_inner, tyArgs, [e1', e2'], rngTy), rngTy) else err (cxt, [ S "type error for arguments of binary operator \"•\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) end | (ty1, ty2) => err (cxt, [ S "type error for arguments of binary operator \"•\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) (* end case *)) else if Atom.same(rator, BasisNames.op_colon) then (case (TU.prune ty1, TU.prune ty2) of (Ty.T_Tensor(s1 as Ty.Shape(dd1 as _::_::_)), Ty.T_Tensor(s2 as Ty.Shape(d21::d22::dd2))) => let val (dd1, d11, d12) = let fun splitLast (prefix, [d1, d2]) = (List.rev prefix, d1, d2) | splitLast (prefix, d::dd) = splitLast (d::prefix, dd) | splitLast (_, []) = raise Fail "impossible" in splitLast ([], dd1) end val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf BV.op_colon) val resTy = Ty.T_Tensor(Ty.Shape(dd1@dd2)) in if U.equalDim(d11, d21) andalso U.equalDim(d12, d22) andalso U.equalTypes(domTy, [ty1, ty2]) andalso U.equalType(rngTy, resTy) then (AST.E_Apply(BV.op_colon, tyArgs, [e1', e2'], rngTy), rngTy) else err (cxt, [ S "type error for arguments of binary operator \":\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) end | (ty1, ty2) => err (cxt, [ S "type error for arguments of binary operator \":\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) (* end case *)) else (case Env.findFunc (#env env, rator) of Env.PrimFun[rator] => let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf rator) in case U.matchArgs(domTy, [e1', e2'], [ty1, ty2]) of SOME args => (AST.E_Apply(rator, tyArgs, args, rngTy), rngTy) | NONE => err (cxt, [ S "type error for binary operator \"", V rator, S "\"\n", S " expected: ", TYS domTy, S "\n", S " but found: ", TYS[ty1, ty2] ]) (* end case *) end | Env.PrimFun ovldList => resolveOverload (cxt, rator, [ty1, ty2], [e1', e2'], ovldList) | _ => raise Fail "impossible" (* end case *)) end | PT.E_UnaryOp(rator, e) => let val (e', ty) = checkExpr(env, cxt, e) in case Env.findFunc (#env env, rator) of Env.PrimFun[rator] => let val (tyArgs, Ty.T_Fun([domTy], rngTy)) = U.instantiate(Var.typeOf rator) in case coerceType (domTy, ty, e') of SOME e' => (AST.E_Apply(rator, tyArgs, [e'], rngTy), rngTy) | NONE => err (cxt, [ S "type error for unary operator \"", V rator, S "\"\n", S " expected: ", TY domTy, S "\n", S " but found: ", TY ty ]) (* end case *) end | Env.PrimFun ovldList => resolveOverload (cxt, rator, [ty], [e'], ovldList) | _ => raise Fail "impossible" (* end case *) end | PT.E_Slice(e, indices) => let val (e', ty) = checkExpr (env, cxt, e) fun checkIndex NONE = NONE | checkIndex (SOME e) = let val (e', ty) = checkExpr (env, cxt, e) in if U.equalType(ty, Ty.T_Int) then (SOME e') else err (cxt, [ S "type error in index expression\n", S " expected int, but found: ", TY ty ]) end val indices' = List.map checkIndex indices val order = List.length indices' val expectedTy = TU.mkTensorTy order val resultTy = TU.slice(expectedTy, List.map Option.isSome indices') in if U.equalType(ty, expectedTy) then () else err (cxt, [ S "type error in slice operation\n", S " expected: ", S(Int.toString order), S "-order tensor\n", S " but found: ", TY ty ]); (AST.E_Slice(e', indices', resultTy), resultTy) end | PT.E_Subscript(e1, e2) => let val (e1', ty1) = checkExpr (env, cxt, e1) val (e2', ty2) = checkExpr (env, cxt, e2) fun chkIndex () = if U.equalType(ty2, Ty.T_Int) then () else err (cxt, [ S "expected int type for subscript index\n", S " but found: ", TY ty2 ]) fun finish rator = let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = U.instantiate(Var.typeOf rator) in if U.equalTypes(domTy, [ty1, ty2]) then let val exp = AST.E_Apply(rator, tyArgs, [e1', e2'], rngTy) in (exp, rngTy) end else raise Fail "unexpected unification failure" end in case TU.pruneHead ty1 of Ty.T_DynSequence _ => ( chkIndex (); finish BV.dynSubscript) | Ty.T_Sequence _ => ( chkIndex (); finish BV.subscript) | _ => err (cxt, [ S "expected sequence type for subscript\n", S " but found: ", TY ty1 ]) (* end case *) end | PT.E_Apply(e, args) => let fun stripMark (PT.E_Mark{tree, ...}) = stripMark tree | stripMark e = e val (args, tys) = checkExprList (env, cxt, args) fun checkFunApp f = (case Util.instantiate(Var.typeOf f) of (tyArgs, Ty.T_Fun(domTy, rngTy)) => ( case U.matchArgs (domTy, args, tys) of SOME args => (AST.E_Apply(f, tyArgs, args, rngTy), rngTy) | NONE => err(cxt, [ S "type error in application of ", V f, S "\n", S " expected: ", TYS domTy, S "\n", S " but found: ", TYS tys ]) (* end case *)) | _ => err(cxt, [S "application of non-function ", V f]) (* end case *)) fun checkFieldApp (e1', ty1) = (case (args, tys) of ([e2'], [ty2]) => let val (tyArgs, Ty.T_Fun([fldTy, domTy], rngTy)) = Util.instantiate(Var.typeOf BV.op_probe) fun tyError () = err (cxt, [ S "type error for field application\n", S " expected: ", TYS[fldTy, domTy], S "\n", S " but found: ", TYS[ty1, ty2] ]) in if U.equalType(fldTy, ty1) then (case coerceType(domTy, ty2, e2') of SOME e2' => (AST.E_Apply(BV.op_probe, tyArgs, [e1', e2'], rngTy), rngTy) | NONE => tyError() (* end case *)) else tyError() end | _ => err(cxt, [S "badly formed field application"]) (* end case *)) in case stripMark e of PT.E_Var f => (case Env.findVar (#env env, f) of SOME f' => ( markUsed (f', true); checkFieldApp (AST.E_Var f', Var.monoTypeOf f')) | NONE => (case Env.findFunc (#env env, f) of Env.PrimFun[] => err(cxt, [S "unknown function ", A f]) | Env.PrimFun[f'] => if (inStrand env) andalso (Basis.isRestricted f') then err(cxt, [ S "use of restricted operation ", V f', S " in strand body" ]) else checkFunApp f' | Env.PrimFun ovldList => resolveOverload (cxt, f, tys, args, ovldList) | Env.UserFun f' => ( markUsed (f', true); checkFunApp f') (* end case *)) (* end case *)) | _ => checkFieldApp (checkExpr (env, cxt, e)) (* end case *) end | PT.E_Tuple args => let val (args, tys) = checkExprList (env, cxt, args) in raise Fail "E_Tuple not yet implemented" (* FIXME *) end | PT.E_Sequence args => (case checkExprList (env, cxt, args) (* FIXME: need kind for concrete types here! *) of ([], _) => let val ty = Ty.T_Sequence(Ty.T_Var(MetaVar.newTyVar()), Ty.DimConst 0) in (AST.E_Seq([], ty), ty) end | (args, ty::tys) => if TU.isFixedSizeType(TU.pruneHead ty) then let fun chkTy ty' = U.equalType(ty, ty') val resTy = Ty.T_Sequence(ty, Ty.DimConst(List.length args)) in if List.all chkTy tys then (AST.E_Seq(args, resTy), resTy) else err(cxt, [S "arguments of sequence expression must have same type"]) end else err(cxt, [S "sequence expression of non-value argument type"]) (* end case *)) | PT.E_Cons args => let val (args, tys as ty::_) = checkExprList (env, cxt, args) in case realType(TU.pruneHead ty) of ty as Ty.T_Tensor shape => let val Ty.Shape dd = TU.pruneShape shape (* NOTE: this may fail if we allow user polymorphism *) val resTy = Ty.T_Tensor(Ty.Shape(Ty.DimConst(List.length args) :: dd)) fun chkArgs (arg::args, argTy::tys, args') = (case coerceType(ty, argTy, arg) of SOME arg' => chkArgs (args, tys, arg'::args') | NONE => err(cxt, [S "arguments of tensor construction must have same type"]) (* end case *)) | chkArgs ([], [], args') = (AST.E_Cons(List.rev args'), resTy) in chkArgs (args, tys, []) end | _ => err(cxt, [S "Invalid argument type for tensor construction"]) (* end case *) end | PT.E_Real e => (case checkExpr (env, cxt, e) of (e', Ty.T_Int) => (AST.E_Apply(BV.i2r, [], [e'], Ty.realTy), Ty.realTy) | _ => err(cxt, [S "argument of real conversion must be int"]) (* end case *)) | PT.E_Id d => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.identity)) in if U.equalType(Ty.T_Tensor(checkShape(cxt, [d,d])), rngTy) then (AST.E_Apply(BV.identity, tyArgs, [], rngTy), rngTy) else raise Fail "impossible" end | PT.E_Zero dd => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.zero)) in if U.equalType(Ty.T_Tensor(checkShape(cxt, dd)), rngTy) then (AST.E_Apply(BV.zero, tyArgs, [], rngTy), rngTy) else raise Fail "impossible" end | PT.E_Image nrrd => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.fn_image)) in (AST.E_LoadNrrd(tyArgs, nrrd, rngTy), rngTy) end | PT.E_Load nrrd => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.fn_load)) in (AST.E_LoadNrrd(tyArgs, nrrd, rngTy), rngTy) end (* end case *)) (* typecheck a list of expressions returning a list of AST expressions and a list * of types of the expressions. *) and checkExprList (env, cxt, exprs) = let fun chk (e, (es, tys)) = let val (e, ty) = checkExpr (env, cxt, e) in (e::es, ty::tys) end in List.foldr chk ([], []) exprs end fun checkVarDecl (env, cxt, kind, d) = (case d of PT.VD_Mark m => checkVarDecl (env, (#1 cxt, #span m), kind, #tree m) | PT.VD_Decl(ty, x, e) => let val ty = checkTy (cxt, ty) val x' = Var.new (x, kind, ty) val (e', ty') = checkExpr (env, cxt, e) in case coerceType (ty, ty', e') of SOME e' => (x, x', e') | NONE => err(cxt, [ S "type of variable ", A x, S " does not match type of initializer\n", S " expected: ", TY ty, S "\n", S " but found: ", TY ty' ]) (* end case *) end (* end case *)) (* check for unreachable code and non-return statements in the tail position of a function. * Note that unreachable code is typechecked and included in the AST. It is pruned away * by simplify. *) fun chkCtlFlow (cxt, scope, stm) = let val (inFun, inUpdate, funName) = (case scope of FunctionScope(_, f) => (true, false, Atom.toString f) | MethodScope StrandUtil.Update => (false, true, "") | _ => (false, false, "") (* end case *)) (* checks a statement for correct control flow; it returns false if control may * flow from the statement to the next in a sequence and true if control cannot * flow to the next statement. *) fun chk ((errStrm, _), hasSucc, isJoin, unreachable, PT.S_Mark{span, tree}) = chk((errStrm, span), hasSucc, isJoin, unreachable, tree) | chk (cxt, hasSucc, isJoin, unreachable, PT.S_Block(stms as _::_)) = let fun chk' ([], escapes) = escapes | chk' ([stm], escapes) = chk(cxt, hasSucc, isJoin, escapes orelse unreachable, stm) orelse escapes | chk' (stm::stms, escapes) = let val escapes = chk(cxt, true, false, escapes orelse unreachable, stm) orelse escapes in chk'(stms, escapes) end in chk' (stms, false) end | chk (cxt, hasSucc, isJoin, unreachable, PT.S_IfThen(_, stm)) = ( if inFun andalso not hasSucc andalso not unreachable then err(cxt, [ S "Missing return statement in tail position of function ", S funName ]) else (); ignore (chk (cxt, hasSucc, true, unreachable, stm)); false) | chk (cxt, hasSucc, isJoin, unreachable, PT.S_IfThenElse(_, stm1, stm2)) = let val escapes = chk (cxt, hasSucc, true, unreachable, stm1) val escapes = chk (cxt, hasSucc, true, unreachable, stm2) andalso escapes in if escapes andalso hasSucc andalso not unreachable then ( warn(cxt, [S "unreachable statements after \"if-then-else\" statement"]); true) else escapes end | chk (cxt, _, _, _, PT.S_New _) = ( if not inUpdate then err(cxt, [S "\"new\" statement outside of update method"]) else (); false) | chk (cxt, hasSucc, isJoin, unreachable, PT.S_Die) = ( if not inUpdate then err(cxt, [S "\"die\" statment outside of update method"]) else if hasSucc andalso not isJoin andalso not unreachable then warn(cxt, [S "statements following \"die\" statment are unreachable"]) else (); true) | chk (cxt, hasSucc, isJoin, unreachable, PT.S_Stabilize) = ( if not inUpdate then err(cxt, [S "\"stabilize\" statment outside of update method"]) else if hasSucc andalso not isJoin andalso not unreachable then warn(cxt, [S "statements following \"stabilize\" statment are unreachable"]) else (); true) | chk (cxt, hasSucc, isJoin, unreachable, PT.S_Return _) = ( if not inFun then err(cxt, [S "\"return\" statment outside of function body"]) else if hasSucc andalso not isJoin andalso not unreachable then warn(cxt, [S "statements following \"return\" statment are unreachable"]) else (); true) | chk (cxt, hasSucc, isJoin, unreachable, _) = ( if inFun andalso not hasSucc andalso not unreachable then err(cxt, [ S "Missing return statement in tail position of function ", S funName ]) else (); false) in ignore (chk (cxt, false, false, false, stm)) end (* check the creation of a new strand; either in a "new" statement or in an "initially" * block. *) fun checkStrandCreate (env, cxt, strand, args) = let val argsAndTys' = List.map (fn e => checkExpr(env, cxt, e)) args val (args', tys') = ListPair.unzip argsAndTys' in (* check that strand is defined and that the argument types match *) case Env.findStrand (#env env, strand) of SOME(AST.Strand{params, ...}) => let val paramTys = List.map Var.monoTypeOf params in case U.matchArgs (paramTys, args', tys') of SOME args' => (strand, args', env) | NONE => err(cxt, [ S "type error in new ", A strand, S "\n", S " expected: ", TYS paramTys, S "\n", S " but found: ", TYS tys' ]) (* end case *) end | NONE => err(cxt, [S "unknown strand ", A strand]) (* end case *) end (* typecheck a statement and translate it to AST *) fun checkStmt (env : env, cxt : context, stm) = let fun chkStmt (env : env, cxt : context, s) = (case s of PT.S_Mark m => chkStmt (withEnvAndContext (env, cxt, m)) | PT.S_Block stms => let fun chk (_, [], stms) = AST.S_Block(List.rev stms) | chk (env, s::ss, stms) = let val (s', env') = chkStmt (env, cxt, s) in chk (env', ss, s'::stms) end in (chk (blockScope env, stms, []), env) end | PT.S_Decl vd => let val (x, x', e) = checkVarDecl (env, cxt, Var.LocalVar, vd) in checkForRedef (env, cxt, x); (AST.S_Decl(AST.VD_Decl(x', e)), insertLocal(env, cxt, x, x')) end | PT.S_IfThen(e, s) => let val (e', ty) = checkExpr (env, cxt, e) val (s', _) = chkStmt (env, cxt, s) in (* check that condition has bool type *) case ty of Ty.T_Bool => () | _ => err(cxt, [S "condition not boolean type"]) (* end case *); (AST.S_IfThenElse(e', s', AST.S_Block[]), env) end | PT.S_IfThenElse(e, s1, s2) => let val (e', ty) = checkExpr (env, cxt, e) val (s1', _) = chkStmt (env, cxt, s1) val (s2', _) = chkStmt (env, cxt, s2) in (* check that condition has bool type *) case ty of Ty.T_Bool => () | _ => err(cxt, [S "condition not boolean type"]) (* end case *); (AST.S_IfThenElse(e', s1', s2'), env) end | PT.S_Assign(x, e) => (case Env.findVar (#env env, x) of NONE => err(cxt, [ S "undefined variable ", A x ]) | SOME x' => let (* FIXME: check for polymorphic variables *) val ([], ty) = Var.typeOf x' val (e', ty') = checkExpr (env, cxt, e) (* check for promotion *) val e' = (case coerceType(ty, ty', e') of SOME e' => e' | NONE => err(cxt, [ S "type of assigned variable ", A x, S " does not match type of rhs\n", S " expected: ", TY ty, S "\n", S " but found: ", TY ty' ]) (* end case *)) in (* check that x' is mutable *) case Var.kindOf x' of Var.StrandStateVar => () | Var.StrandOutputVar => markUsed (x', true) | Var.LocalVar => () | _ => err(cxt, [ S "assignment to immutable variable ", A x, S " in ", S(scopeToString(#scope env)) ]) (* end case *); (AST.S_Assign(x', e'), env) end (* end case *)) | PT.S_OpAssign(x, rator, e) => (case Env.findVar (#env env, x) of SOME x' => let val e1' = AST.E_Var x' val ty1 = Var.monoTypeOf x' val (e2', ty2) = checkExpr(env, cxt, e) val Env.PrimFun ovldList = Env.findFunc (#env env, rator) val (rhs, _) = resolveOverload (cxt, rator, [ty1, ty2], [e1', e2'], ovldList) in (* check that x' is mutable *) case Var.kindOf x' of Var.StrandStateVar => () | Var.StrandOutputVar => markUsed (x', true) | Var.LocalVar => () | _ => err(cxt, [ S "assignment to immutable variable ", A x, S " in ", S(scopeToString(#scope env)) ]) (* end case *); (AST.S_Assign(x', rhs), env) end | NONE => err(cxt, [S "undeclared variable ", A x, S " on lhs of ", A rator]) (* end case *)) | PT.S_New(strand, args) => let (* note that scope has already been checked in chkCtlFlow *) val (strand, args, env) = checkStrandCreate (env, cxt, strand, args) in Env.recordProp (#env env, StrandUtil.NewStrands); (AST.S_New(strand, args), env) end | PT.S_Die => ( (* note that scope has already been checked in chkCtlFlow *) Env.recordProp (#env env, StrandUtil.StrandsMayDie); (AST.S_Die, env)) | PT.S_Stabilize => (AST.S_Stabilize, env) (* note that scope has already been checked in chkCtlFlow *) | PT.S_Return e => let val (e', ty) = checkExpr (env, cxt, e) in case #scope env of FunctionScope(ty', f) => (case coerceType(ty', ty, e') of SOME e' => (AST.S_Return e', env) | NONE => err(cxt, [ S "type of return expression does not match return type of function ", A f, S "\n", S " expected: ", TY ty', S "\n", S " but found: ", TY ty ]) (* end case *)) | _ => (AST.S_Return e', env) (* this error condition has already been checked *) (* end case *) end | PT.S_Print args => let fun chkArg e = let val (e', ty) = checkExpr (env, cxt, e) in if TU.isValueType ty then () else err(cxt, [ S "expected value type in print, but found ", TY ty ]); e' end val args' = List.map chkArg args in (AST.S_Print args', env) end (* end case *)) in chkCtlFlow (cxt, #scope env, stm); chkStmt (env, cxt, stm) end (* checkStmt *) fun checkParams (env, cxt, params) = let fun chkParam (env, cxt, param) = (case param of PT.P_Mark m => chkParam (withEnvAndContext (env, cxt, m)) | PT.P_Param(ty, x) => let val x' = Var.new(x, AST.StrandParam, checkTy (cxt, ty)) in checkForRedef (env, cxt, x); (x', insertLocal(env, cxt, x, x')) end (* end case *)) fun chk (param, (xs, env)) = let val (x, env) = chkParam (env, cxt, param) in (x::xs, env) end in List.foldr chk ([], env) params end fun checkMethod (env, cxt, meth) = (case meth of PT.M_Mark m => checkMethod (withEnvAndContext (env, cxt, m)) | PT.M_Method(name, body) => let val (body, _) = checkStmt(methodScope (env, name), cxt, body) in AST.M_Method(name, body) end (* end case *)) fun checkStrand (env, cxt, {name, params, state, methods}) = let (* check the strand parameters *) val (params, env) = checkParams (strandScope env, cxt, params) (* check the strand state variable definitions *) val (vds, hasOutput, env) = let fun checkStateVar ((isOut, vd), (vds, hasOut, env)) = let val kind = if isOut then AST.StrandOutputVar else AST.StrandStateVar val (x, x', e') = checkVarDecl (env, cxt, kind, vd) in (* check that strand variables have value types *) if not(TU.isValueType(Var.monoTypeOf x')) then err(cxt, [ S "strand variable ", V x', S " has non-value type ", TY(Var.monoTypeOf x') ]) else (); checkForRedef (env, cxt, x); (AST.VD_Decl(x', e')::vds, hasOut orelse isOut, insertLocal(env, cxt, x, x')) end val (vds, hasOutput, env) = List.foldl checkStateVar ([], false, env) state in (List.rev vds, hasOutput, env) end (* define a dummy strand definition so that recursive mentions of this strand will * typecheck. *) val env = let val strand = AST.Strand{name = name, params = params, state = vds, methods = []} in insertStrand(env, cxt, strand) end (* check the strand methods *) val methods = List.map (fn m => checkMethod (env, cxt, m)) methods (* get the list of methods defined by the user *) val methodNames = List.map (fn (AST.M_Method(name, _)) => name) methods (* if the stabilize method is not provided then add one, otherwise record the property *) (* FIXME: perhaps we can get away without creating a dummy stabilize method! *) val methods = if List.exists (fn StrandUtil.Stabilize => true | _ => false) methodNames then ( Env.recordProp (#env env, StrandUtil.HasStabilizeMethod); methods) else methods @ [AST.M_Method(StrandUtil.Stabilize, AST.S_Block[])] in (* FIXME: once there are global outputs, then it should be okay to have not strand outputs! *) (* check that there is at least one output variable *) if not hasOutput then err(cxt, [S "strand ", A name, S " does not have any outputs"]) else (); (* FIXME: should check for duplicate method definitions *) if not(List.exists (fn StrandUtil.Update => true | _ => false) methodNames) then err(cxt, [S "strand ", A name, S " is missing an update method"]) else (); AST.Strand{name = name, params = params, state = vds, methods = methods} end fun checkCreate (env, cxt, PT.C_Mark m) = checkCreate (withEnvAndContext (env, cxt, m)) | checkCreate (env, cxt, PT.C_Create(strand, args)) = let val (strand, args, env) = checkStrandCreate (env, cxt, strand, args) in AST.C_Create(strand, args) end fun checkIters (env0, cxt, iters) = let (* check an iteration range specification from the initially clause. We do the checking * of the expressions using env0, which does not have any of the iteration variables in * it (the iteration is rectangular), but we also accumulate the iteration bindings, * which are used to create the final environment for checking the create call. *) fun checkIter (env, cxt, PT.I_Mark m) = checkIter (withEnvAndContext (env, cxt, m)) | checkIter (env, cxt, PT.I_Range(x, e1, e2)) = let val (e1', ty1) = checkExpr (env, cxt, e1) val (e2', ty2) = checkExpr (env, cxt, e2) val x' = Var.new(x, Var.LocalVar, Ty.T_Int) in case (ty1, ty2) of (Ty.T_Int, Ty.T_Int) => (AST.I_Range(x', e1', e2'), (x, x')) | _ => err(cxt, [ S "range expressions must have integer type\n", S " but found: ", TY ty1, S " .. ", TY ty2 ]) (* end case *) end fun chk ([], iters, bindings) = (List.rev iters, List.foldl (fn ((x, x'), env) => insertLocal(env, cxt, x, x')) env0 bindings) | chk (iter::rest, iters, bindings) = let val (iter, binding) = checkIter (env0, cxt, iter) in chk (rest, iter::iters, binding::bindings) end in chk (iters, [], []) end (* check that an initializer expression is a compile-time constant and report an error, if not *) fun checkInitializer (cxt, e) = let fun isConstExp e = (case e of AST.E_Var x => false | AST.E_Lit _ => true | AST.E_Tuple args => List.all isConstExp args | AST.E_Apply(rator, _, args, _) => (Basis.allowedInConstExp rator) andalso (List.all isConstExp args) | AST.E_Cons args => List.all isConstExp args | AST.E_Seq(args, _) => List.all isConstExp args | AST.E_Slice _ => false | AST.E_Cond _ => false (* we disallow conditionals so that the inputInit CFG is simple *) | AST.E_LoadNrrd _ => true | AST.E_Coerce{e, ...} => isConstExp e (* end case *)) in if isConstExp e then () else err(cxt, [S "initializer is not a constant expression"]) end fun checkDecl (env, cxt, d) = (case d of PT.D_Mark m => checkDecl (withEnvAndContext (env, cxt, m)) | PT.D_Input(ty, x, desc, optExp) => let (* FIXME: need to do something with the description *) val ty = checkTy(cxt, ty) val x' = Var.new(x, Var.InputVar, ty) val dcl = (case optExp of NONE => AST.D_Input(x', desc, NONE) | SOME e => let val (e', ty') = checkExpr (env, cxt, e) in checkInitializer (cxt, e'); case coerceType (ty, ty', e') of SOME e' => AST.D_Input(x', desc, SOME e') | NONE => err(cxt, [ S "definition of ", V x', S " has wrong type\n", S " expected: ", TY ty, S "\n", S " but found: ", TY ty' ]) (* end case *) end (* end case *)) in (* check that input variables have valid types *) if not(TU.isValueType ty orelse TU.isImageType ty) then err(cxt, [S "input variable ", V x', S " has invalid type ", TY ty]) else (); checkForRedef (env, cxt, x); Env.recordProp (#env env, StrandUtil.HasGlobals); Env.recordProp (#env env, StrandUtil.HasInputs); (dcl, insertGlobal(env, cxt, x, x')) end | PT.D_Var vd => let val (x, x', e') = checkVarDecl (env, cxt, Var.GlobalVar, vd) in checkForRedef (env, cxt, x); Env.recordProp (#env env, StrandUtil.HasGlobals); (AST.D_Var(AST.VD_Decl(x', e')), insertGlobal(env, cxt, x, x')) end | PT.D_Func(ty, f, params, body) => let val ty' = checkTy(cxt, ty) val env' = functionScope (env, ty', f) val (params', env') = checkParams (env', cxt, params) val body' = (case body of PT.FB_Expr e => let val (e', ty) = checkExpr (env', cxt, e) in case coerceType(ty', ty, e') of SOME e' => AST.S_Return e' | NONE => err(cxt, [ S "type of function body does not match return type\n", S " expected: ", TY ty', S "\n", S " but found: ", TY ty ]) (* end case *) end | PT.FB_Stmt s => #1(checkStmt(env', cxt, s)) (* end case *)) val fnTy = Ty.T_Fun(List.map Var.monoTypeOf params', ty') val f' = Var.new (f, AST.FunVar, fnTy) in (* QUESTION: should we check for redefinition of basis functions? *) checkForRedef (env, cxt, f); (AST.D_Func(f', params', body'), insertFunc(env, cxt, f, f')) end | PT.D_Strand arg => let val strand = checkStrand(strandScope env, cxt, arg) in checkForRedef (env, cxt, #name arg); (AST.D_Strand strand, insertStrand(env, cxt, strand)) end | PT.D_InitialArray(create, iterators) => let val (iterators, env') = checkIters (initScope env, cxt, iterators) val create = checkCreate (env', cxt, create) in if StrandUtil.hasProp StrandUtil.StrandsMayDie (Env.properties (#env env)) then err(cxt, [ S "initial strand grid conflicts with use of \"die\", use collection instead" ]) else if StrandUtil.hasProp StrandUtil.NewStrands (Env.properties (#env env)) then err(cxt, [ S "initial strand grid conflicts with use of \"new\", use collection instead" ]) else (); Env.recordProp (#env env, StrandUtil.StrandArray); (AST.D_InitialArray(create, iterators), env) end | PT.D_InitialCollection(create, iterators) => let val (iterators, env') = checkIters (initScope env, cxt, iterators) val create = checkCreate (env', cxt, create) in (AST.D_InitialCollection(create, iterators), env) end (* end case *)) (* check AST for unused variables. Also check to make sure that there is a strand * definition and exactly one initially clause. *) fun checkForUnused (cxt, dcls) = let val hasStrand = ref false val hasInitially = ref false fun check dcl = let fun chkVar x = if not(isUsed x) andalso (Var.kindOf x <> AST.StrandOutputVar) then warn (cxt, [ S(Var.kindToString x), S " ", V x, S " declared at ", S(Error.locToString(getLoc x)), S " is unused" ]) else () fun chkVDcl (AST.VD_Decl(x, _)) = chkVar x fun chkStm stm = (case stm of AST.S_Block stms => List.app chkStm stms | AST.S_Decl vd => chkVDcl vd | AST.S_IfThenElse(_, s1, s2) => (chkStm s1; chkStm s2) | _ => () (* end case *)) in case dcl of AST.D_Input(x, _, _) => chkVar x | AST.D_Var vd => chkVDcl vd | AST.D_Func(f, params, body) => ( chkVar f; List.app chkVar params; chkStm body) | AST.D_Strand(AST.Strand{state, methods, ...}) => let fun chkMeth (AST.M_Method(_, body)) = chkStm body in hasStrand := true; List.app chkVDcl state; List.app chkMeth methods end | AST.D_InitialArray _ => ( if !hasInitially then err(cxt, [S "multiple initially clauses in program"]) else (); hasInitially := true) | AST.D_InitialCollection _ => ( if !hasInitially then err(cxt, [S "multiple initially clauses in program"]) else (); hasInitially := true) (* end case *) end in List.app check dcls; if not(! hasStrand) then err (cxt, [S "program does not have any strands"]) else (); if not(! hasInitially) then err (cxt, [S "program does not have an initially clause"]) else () end (* reorder the declarations so that the input variables come first *) fun reorderDecls dcls = let fun isInput (AST.D_Input _) = true | isInput _ = false val (inputs, others) = List.partition isInput dcls in inputs @ others end fun check errStrm (PT.Program{span, tree}) = let val cxt = (errStrm, span) fun chk (env, [], dcls') = reorderDecls(List.rev dcls') | chk (env, dcl::dcls, dcls') = let val (dcl', env) = checkDecl (env, cxt, dcl) in chk (env, dcls, dcl'::dcls') end val env = Basis.env() val dcls' = chk ({scope=GlobalScope, bindings=AtomMap.empty, env=env}, tree, []) handle TypeError => [] in checkForUnused (cxt, dcls'); AST.Program{ props = Env.properties env, decls = dcls' } end end
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |