57 |
| IDiv |
| IDiv |
58 |
| IMod |
| IMod |
59 |
| INeg |
| INeg |
|
| Abs of ty |
|
60 |
| LT of ty |
| LT of ty |
61 |
| LTE of ty |
| LTE of ty |
62 |
| EQ of ty |
| EQ of ty |
65 |
| GTE of ty |
| GTE of ty |
66 |
| Power |
| Power |
67 |
| Not |
| Not |
68 |
| Max |
| Abs of ty |
69 |
| Min |
| Max of ty |
70 |
|
| Min of ty |
71 |
| Clamp of ty |
| Clamp of ty |
72 |
| Lerp of ty |
| Lerp of ty |
73 |
| Dist of ty |
| Dist of ty |
116 |
| resultArity IDiv = 1 |
| resultArity IDiv = 1 |
117 |
| resultArity IMod = 1 |
| resultArity IMod = 1 |
118 |
| resultArity INeg = 1 |
| resultArity INeg = 1 |
|
| resultArity (Abs _) = 1 |
|
119 |
| resultArity (LT _) = 1 |
| resultArity (LT _) = 1 |
120 |
| resultArity (LTE _) = 1 |
| resultArity (LTE _) = 1 |
121 |
| resultArity (EQ _) = 1 |
| resultArity (EQ _) = 1 |
124 |
| resultArity (GTE _) = 1 |
| resultArity (GTE _) = 1 |
125 |
| resultArity Power = 1 |
| resultArity Power = 1 |
126 |
| resultArity Not = 1 |
| resultArity Not = 1 |
127 |
| resultArity Max = 1 |
| resultArity (Abs _) = 1 |
128 |
| resultArity Min = 1 |
| resultArity (Max _) = 1 |
129 |
|
| resultArity (Min _) = 1 |
130 |
| resultArity (Clamp _) = 1 |
| resultArity (Clamp _) = 1 |
131 |
| resultArity (Lerp _) = 1 |
| resultArity (Lerp _) = 1 |
132 |
| resultArity (Dist _) = 1 |
| resultArity (Dist _) = 1 |
175 |
| arity IDiv = 2 |
| arity IDiv = 2 |
176 |
| arity IMod = 2 |
| arity IMod = 2 |
177 |
| arity INeg = 1 |
| arity INeg = 1 |
|
| arity (Abs _) = 1 |
|
178 |
| arity (LT _) = 2 |
| arity (LT _) = 2 |
179 |
| arity (LTE _) = 2 |
| arity (LTE _) = 2 |
180 |
| arity (EQ _) = 2 |
| arity (EQ _) = 2 |
183 |
| arity (GTE _) = 2 |
| arity (GTE _) = 2 |
184 |
| arity Power = 2 |
| arity Power = 2 |
185 |
| arity Not = 1 |
| arity Not = 1 |
186 |
| arity Max = 2 |
| arity (Abs _) = 1 |
187 |
| arity Min = 2 |
| arity (Max _) = 2 |
188 |
|
| arity (Min _) = 2 |
189 |
| arity (Clamp _) = 3 |
| arity (Clamp _) = 3 |
190 |
| arity (Lerp _) = 3 |
| arity (Lerp _) = 3 |
191 |
| arity (Dist _) = 2 |
| arity (Dist _) = 2 |
243 |
| same (IDiv, IDiv) = true |
| same (IDiv, IDiv) = true |
244 |
| same (IMod, IMod) = true |
| same (IMod, IMod) = true |
245 |
| same (INeg, INeg) = true |
| same (INeg, INeg) = true |
|
| same (Abs(a0), Abs(b0)) = samety(a0, b0) |
|
246 |
| same (LT(a0), LT(b0)) = samety(a0, b0) |
| same (LT(a0), LT(b0)) = samety(a0, b0) |
247 |
| same (LTE(a0), LTE(b0)) = samety(a0, b0) |
| same (LTE(a0), LTE(b0)) = samety(a0, b0) |
248 |
| same (EQ(a0), EQ(b0)) = samety(a0, b0) |
| same (EQ(a0), EQ(b0)) = samety(a0, b0) |
251 |
| same (GTE(a0), GTE(b0)) = samety(a0, b0) |
| same (GTE(a0), GTE(b0)) = samety(a0, b0) |
252 |
| same (Power, Power) = true |
| same (Power, Power) = true |
253 |
| same (Not, Not) = true |
| same (Not, Not) = true |
254 |
| same (Max, Max) = true |
| same (Abs(a0), Abs(b0)) = samety(a0, b0) |
255 |
| same (Min, Min) = true |
| same (Max(a0), Max(b0)) = samety(a0, b0) |
256 |
|
| same (Min(a0), Min(b0)) = samety(a0, b0) |
257 |
| same (Clamp(a0), Clamp(b0)) = samety(a0, b0) |
| same (Clamp(a0), Clamp(b0)) = samety(a0, b0) |
258 |
| same (Lerp(a0), Lerp(b0)) = samety(a0, b0) |
| same (Lerp(a0), Lerp(b0)) = samety(a0, b0) |
259 |
| same (Dist(a0), Dist(b0)) = samety(a0, b0) |
| same (Dist(a0), Dist(b0)) = samety(a0, b0) |
303 |
| hash IDiv = 0w11 |
| hash IDiv = 0w11 |
304 |
| hash IMod = 0w13 |
| hash IMod = 0w13 |
305 |
| hash INeg = 0w17 |
| hash INeg = 0w17 |
306 |
| hash (Abs(a0)) = 0w19 + hashty a0 |
| hash (LT(a0)) = 0w19 + hashty a0 |
307 |
| hash (LT(a0)) = 0w23 + hashty a0 |
| hash (LTE(a0)) = 0w23 + hashty a0 |
308 |
| hash (LTE(a0)) = 0w29 + hashty a0 |
| hash (EQ(a0)) = 0w29 + hashty a0 |
309 |
| hash (EQ(a0)) = 0w31 + hashty a0 |
| hash (NEQ(a0)) = 0w31 + hashty a0 |
310 |
| hash (NEQ(a0)) = 0w37 + hashty a0 |
| hash (GT(a0)) = 0w37 + hashty a0 |
311 |
| hash (GT(a0)) = 0w41 + hashty a0 |
| hash (GTE(a0)) = 0w41 + hashty a0 |
312 |
| hash (GTE(a0)) = 0w43 + hashty a0 |
| hash Power = 0w43 |
313 |
| hash Power = 0w47 |
| hash Not = 0w47 |
314 |
| hash Not = 0w53 |
| hash (Abs(a0)) = 0w53 + hashty a0 |
315 |
| hash Max = 0w59 |
| hash (Max(a0)) = 0w59 + hashty a0 |
316 |
| hash Min = 0w61 |
| hash (Min(a0)) = 0w61 + hashty a0 |
317 |
| hash (Clamp(a0)) = 0w67 + hashty a0 |
| hash (Clamp(a0)) = 0w67 + hashty a0 |
318 |
| hash (Lerp(a0)) = 0w71 + hashty a0 |
| hash (Lerp(a0)) = 0w71 + hashty a0 |
319 |
| hash (Dist(a0)) = 0w73 + hashty a0 |
| hash (Dist(a0)) = 0w73 + hashty a0 |
362 |
| toString IDiv = "IDiv" |
| toString IDiv = "IDiv" |
363 |
| toString IMod = "IMod" |
| toString IMod = "IMod" |
364 |
| toString INeg = "INeg" |
| toString INeg = "INeg" |
|
| toString (Abs(a0)) = concat["Abs<", tyToString a0, ">"] |
|
365 |
| toString (LT(a0)) = concat["LT<", tyToString a0, ">"] |
| toString (LT(a0)) = concat["LT<", tyToString a0, ">"] |
366 |
| toString (LTE(a0)) = concat["LTE<", tyToString a0, ">"] |
| toString (LTE(a0)) = concat["LTE<", tyToString a0, ">"] |
367 |
| toString (EQ(a0)) = concat["EQ<", tyToString a0, ">"] |
| toString (EQ(a0)) = concat["EQ<", tyToString a0, ">"] |
370 |
| toString (GTE(a0)) = concat["GTE<", tyToString a0, ">"] |
| toString (GTE(a0)) = concat["GTE<", tyToString a0, ">"] |
371 |
| toString Power = "Power" |
| toString Power = "Power" |
372 |
| toString Not = "Not" |
| toString Not = "Not" |
373 |
| toString Max = "Max" |
| toString (Abs(a0)) = concat["Abs<", tyToString a0, ">"] |
374 |
| toString Min = "Min" |
| toString (Max(a0)) = concat["Max<", tyToString a0, ">"] |
375 |
|
| toString (Min(a0)) = concat["Min<", tyToString a0, ">"] |
376 |
| toString (Clamp(a0)) = concat["Clamp<", tyToString a0, ">"] |
| toString (Clamp(a0)) = concat["Clamp<", tyToString a0, ">"] |
377 |
| toString (Lerp(a0)) = concat["Lerp<", tyToString a0, ">"] |
| toString (Lerp(a0)) = concat["Lerp<", tyToString a0, ">"] |
378 |
| toString (Dist(a0)) = concat["Dist<", tyToString a0, ">"] |
| toString (Dist(a0)) = concat["Dist<", tyToString a0, ">"] |