SCM Repository
Annotation of /sml/branches/SMLNJ/src/MLRISC/alpha/mltree/alpha.sml
Parent Directory
|
Revision Log
Revision 475 - (view) (download)
1 : | monnier | 409 | (* |
2 : | * This is a revamping of the Alpha32 instruction selection module | ||
3 : | * using the new MLTREE and instruction representation. I've dropped | ||
4 : | * the suffix 32 since we now support 64 bit datatypes. | ||
5 : | * | ||
6 : | * -- Allen | ||
7 : | * | ||
8 : | * Notes: places with optimizations are marked ***OPT*** | ||
9 : | *) | ||
10 : | |||
11 : | functor Alpha | ||
12 : | (structure AlphaInstr : ALPHAINSTR | ||
13 : | structure AlphaMLTree : MLTREE | ||
14 : | structure PseudoInstrs : ALPHA_PSEUDO_INSTR | ||
15 : | monnier | 475 | sharing AlphaMLTree.Region = AlphaInstr.Region |
16 : | sharing AlphaMLTree.Constant = AlphaInstr.Constant | ||
17 : | sharing PseudoInstrs.I = AlphaInstr | ||
18 : | sharing PseudoInstrs.T = AlphaMLTree | ||
19 : | monnier | 409 | |
20 : | (* Cost of multiplication in cycles *) | ||
21 : | val multCost : int ref | ||
22 : | |||
23 : | (* Should we just use the native multiply by a constant? *) | ||
24 : | val useMultByConst : bool ref | ||
25 : | ) : MLTREECOMP = | ||
26 : | struct | ||
27 : | |||
28 : | structure T = AlphaMLTree | ||
29 : | monnier | 429 | structure S = T.Stream |
30 : | monnier | 409 | structure R = AlphaMLTree.Region |
31 : | structure I = AlphaInstr | ||
32 : | structure C = AlphaInstr.C | ||
33 : | structure LE = LabelExp | ||
34 : | structure W32 = Word32 | ||
35 : | monnier | 429 | structure P = PseudoInstrs |
36 : | monnier | 409 | |
37 : | (********************************************************* | ||
38 : | |||
39 : | Trap Shadows, Floating Exceptions, and Denormalized | ||
40 : | Numbers on the DEC Alpha | ||
41 : | |||
42 : | Andrew W. Appel and Lal George | ||
43 : | Nov 28, 1995 | ||
44 : | |||
45 : | See section 4.7.5.1 of the Alpha Architecture Reference Manual. | ||
46 : | |||
47 : | The Alpha has imprecise exceptions, meaning that if a floating | ||
48 : | point instruction raises an IEEE exception, the exception may | ||
49 : | not interrupt the processor until several successive instructions have | ||
50 : | completed. ML, on the other hand, may want a "precise" model | ||
51 : | of floating point exceptions. | ||
52 : | |||
53 : | Furthermore, the Alpha hardware does not support denormalized numbers | ||
54 : | (for "gradual underflow"). Instead, underflow always rounds to zero. | ||
55 : | However, each floating operation (add, mult, etc.) has a trapping | ||
56 : | variant that will raise an exception (imprecisely, of course) on | ||
57 : | underflow; in that case, the instruction will produce a zero result | ||
58 : | AND an exception will occur. In fact, there are several variants | ||
59 : | of each instruction; three variants of MULT are: | ||
60 : | |||
61 : | MULT s1,s2,d truncate denormalized result to zero; no exception | ||
62 : | MULT/U s1,s2,d truncate denormalized result to zero; raise UNDERFLOW | ||
63 : | MULT/SU s1,s2,d software completion, producing denormalized result | ||
64 : | |||
65 : | The hardware treats the MULT/U and MULT/SU instructions identically, | ||
66 : | truncating a denormalized result to zero and raising the UNDERFLOW | ||
67 : | exception. But the operating system, on an UNDERFLOW exception, | ||
68 : | examines the faulting instruction to see if it's an /SU form, and if so, | ||
69 : | recalculates s1*s2, puts the right answer in d, and continues, | ||
70 : | all without invoking the user's signal handler. | ||
71 : | |||
72 : | Because most machines compute with denormalized numbers in hardware, | ||
73 : | to maximize portability of SML programs, we use the MULT/SU form. | ||
74 : | (and ADD/SU, SUB/SU, etc.) But to use this form successfully, | ||
75 : | certain rules have to be followed. Basically, d cannot be the same | ||
76 : | register as s1 or s2, because the opsys needs to be able to | ||
77 : | recalculate the operation using the original contents of s1 and s2, | ||
78 : | and the MULT/SU instruction will overwrite d even if it traps. | ||
79 : | |||
80 : | More generally, we may want to have a sequence of floating-point | ||
81 : | instructions. The rules for such a sequence are: | ||
82 : | |||
83 : | 1. The sequence should end with a TRAPB (trap barrier) instruction. | ||
84 : | (This could be relaxed somewhat, but certainly a TRAPB would | ||
85 : | be a good idea sometime before the next branch instruction or | ||
86 : | update of an ML reference variable, or any other ML side effect.) | ||
87 : | 2. No instruction in the sequence should destroy any operand of itself | ||
88 : | or of any previous instruction in the sequence. | ||
89 : | 3. No two instructions in the sequence should write the same destination | ||
90 : | register. | ||
91 : | |||
92 : | We can achieve these conditions by the following trick in the | ||
93 : | Alpha code generator. Each instruction in the sequence will write | ||
94 : | to a different temporary; this is guaranteed by the translation from | ||
95 : | ML-RISC. At the beginning of the sequence, we will put a special | ||
96 : | pseudo-instruction (we call it DEFFREG) that "defines" the destination | ||
97 : | register of the arithmetic instruction. If there are K arithmetic | ||
98 : | instructions in the sequence, then we'll insert K DEFFREG instructions | ||
99 : | all at the beginning of the sequence. | ||
100 : | Then, each arithop will not only "define" its destination temporary | ||
101 : | but will "use" it as well. When all these instructions are fed to | ||
102 : | the liveness analyzer, the resulting interference graph will then | ||
103 : | have inteference edges satisfying conditions 2 and 3 above. | ||
104 : | |||
105 : | Of course, DEFFREG doesn't actually generate any code. In our model | ||
106 : | of the Alpha, every instruction generates exactly 4 bytes of code | ||
107 : | except the "span-dependent" ones. Therefore, we'll specify DEFFREG | ||
108 : | as a span-dependent instruction whose minimum and maximum sizes are zero. | ||
109 : | |||
110 : | At the moment, we do not group arithmetic operations into sequences; | ||
111 : | that is, each arithop will be preceded by a single DEFFREG and | ||
112 : | followed by a TRAPB. To avoid the cost of all those TRAPB's, we | ||
113 : | should improve this when we have time. Warning: Don't put more | ||
114 : | than 31 instructions in the sequence, because they're all required | ||
115 : | to write to different destination registers! | ||
116 : | |||
117 : | What about multiple traps? For example, suppose a sequence of | ||
118 : | instructions produces an Overflow and a Divide-by-Zero exception? | ||
119 : | ML would like to know only about the earliest trap, but the hardware | ||
120 : | will report BOTH traps to the operating system. However, as long | ||
121 : | as the rules above are followed (and the software-completion versions | ||
122 : | of the arithmetic instructions are used), the operating system will | ||
123 : | have enough information to know which instruction produced the | ||
124 : | trap. It is very probable that the operating system will report ONLY | ||
125 : | the earlier trap to the user process, but I'm not sure. | ||
126 : | |||
127 : | For a hint about what the operating system is doing in its own | ||
128 : | trap-handler (with software completion), see section 6.3.2 of | ||
129 : | "OpenVMS Alpha Software" (Part II of the Alpha Architecture | ||
130 : | Manual). This stuff should apply to Unix (OSF1) as well as VMS. | ||
131 : | |||
132 : | ****************************************************************) | ||
133 : | |||
134 : | fun error msg = MLRiscErrorMsg.error("Alpha",msg) | ||
135 : | |||
136 : | |||
137 : | (* | ||
138 : | * This module is used to simulate operations of non-standard widths. | ||
139 : | *) | ||
140 : | structure Gen = MLTreeGen(structure T = T | ||
141 : | val intTy = 64 | ||
142 : | val naturalWidths = [32,64] | ||
143 : | monnier | 429 | datatype rep = SE | ZE | NEITHER |
144 : | val rep = SE | ||
145 : | monnier | 409 | ) |
146 : | |||
147 : | val zeroR = C.GPReg 31 | ||
148 : | val zeroOpn = I.REGop zeroR | ||
149 : | |||
150 : | |||
151 : | (* | ||
152 : | * Specialize the modules for multiplication/division | ||
153 : | * by constant optimizations. | ||
154 : | *) | ||
155 : | functor Multiply32 = MLTreeMult | ||
156 : | (structure I = I | ||
157 : | structure T = T | ||
158 : | |||
159 : | val intTy = 32 | ||
160 : | |||
161 : | monnier | 429 | type arg = {r1:C.cell,r2:C.cell,d:C.cell} |
162 : | type argi = {r:C.cell,i:int,d:C.cell} | ||
163 : | monnier | 409 | |
164 : | fun mov{r,d} = I.COPY{dst=[d],src=[r],tmp=NONE,impl=ref NONE} | ||
165 : | fun add{r1,r2,d} = I.OPERATE{oper=I.ADDL,ra=r1,rb=I.REGop r2,rc=d} | ||
166 : | (* | ||
167 : | * How to left shift by a constant (32bits) | ||
168 : | *) | ||
169 : | fun slli{r,i=1,d} = [I.OPERATE{oper=I.ADDL,ra=r,rb=I.REGop r,rc=d}] | ||
170 : | | slli{r,i=2,d} = [I.OPERATE{oper=I.S4ADDL,ra=r,rb=zeroOpn,rc=d}] | ||
171 : | | slli{r,i=3,d} = [I.OPERATE{oper=I.S8ADDL,ra=r,rb=zeroOpn,rc=d}] | ||
172 : | | slli{r,i,d} = | ||
173 : | let val tmp = C.newReg() | ||
174 : | in [I.OPERATE{oper=I.SLL,ra=r,rb=I.IMMop i,rc=tmp}, | ||
175 : | I.OPERATE{oper=I.SGNXL,ra=tmp,rb=zeroOpn,rc=d}] | ||
176 : | end | ||
177 : | |||
178 : | (* | ||
179 : | * How to right shift (unsigned) by a constant (32bits) | ||
180 : | *) | ||
181 : | fun srli{r,i,d} = | ||
182 : | let val tmp = C.newReg() | ||
183 : | in [I.OPERATE{oper=I.ZAP,ra=r,rb=I.IMMop 0xf0,rc=tmp}, | ||
184 : | I.OPERATE{oper=I.SRL,ra=tmp,rb=I.IMMop i,rc=d}] | ||
185 : | end | ||
186 : | |||
187 : | (* | ||
188 : | * How to right shift (signed) by a constant (32bits) | ||
189 : | *) | ||
190 : | fun srai{r,i,d} = | ||
191 : | let val tmp = C.newReg() | ||
192 : | in [I.OPERATE{oper=I.SGNXL,ra=r,rb=zeroOpn,rc=tmp}, | ||
193 : | I.OPERATE{oper=I.SRA,ra=tmp,rb=I.IMMop i,rc=d}] | ||
194 : | end | ||
195 : | ) | ||
196 : | |||
197 : | functor Multiply64 = MLTreeMult | ||
198 : | (structure I = I | ||
199 : | structure T = T | ||
200 : | |||
201 : | val intTy = 64 | ||
202 : | |||
203 : | monnier | 429 | type arg = {r1:C.cell,r2:C.cell,d:C.cell} |
204 : | type argi = {r:C.cell,i:int,d:C.cell} | ||
205 : | monnier | 409 | |
206 : | fun mov{r,d} = I.COPY{dst=[d],src=[r],tmp=NONE,impl=ref NONE} | ||
207 : | fun add{r1,r2,d}= I.OPERATE{oper=I.ADDQ,ra=r1,rb=I.REGop r2,rc=d} | ||
208 : | fun slli{r,i,d} = [I.OPERATE{oper=I.SLL,ra=r,rb=I.IMMop i,rc=d}] | ||
209 : | fun srli{r,i,d} = [I.OPERATE{oper=I.SRL,ra=r,rb=I.IMMop i,rc=d}] | ||
210 : | fun srai{r,i,d} = [I.OPERATE{oper=I.SRA,ra=r,rb=I.IMMop i,rc=d}] | ||
211 : | ) | ||
212 : | |||
213 : | (* signed, trapping version of multiply and divide *) | ||
214 : | structure Mult32 = Multiply32 | ||
215 : | (val trapping = true | ||
216 : | val multCost = multCost | ||
217 : | fun addv{r1,r2,d} = [I.OPERATEV{oper=I.ADDLV,ra=r1,rb=I.REGop r2,rc=d}] | ||
218 : | fun subv{r1,r2,d} = [I.OPERATEV{oper=I.SUBLV,ra=r1,rb=I.REGop r2,rc=d}] | ||
219 : | val sh1addv = NONE | ||
220 : | val sh2addv = NONE | ||
221 : | val sh3addv = NONE | ||
222 : | ) | ||
223 : | monnier | 429 | (val signed = true) |
224 : | monnier | 409 | |
225 : | monnier | 429 | (* non-trapping version of multiply and divide *) |
226 : | functor Mul32 = Multiply32 | ||
227 : | monnier | 409 | (val trapping = false |
228 : | val multCost = multCost | ||
229 : | fun addv{r1,r2,d} = [I.OPERATE{oper=I.ADDL,ra=r1,rb=I.REGop r2,rc=d}] | ||
230 : | fun subv{r1,r2,d} = [I.OPERATE{oper=I.SUBL,ra=r1,rb=I.REGop r2,rc=d}] | ||
231 : | val sh1addv = NONE | ||
232 : | val sh2addv = SOME(fn {r1,r2,d} => | ||
233 : | [I.OPERATE{oper=I.S4ADDL,ra=r1,rb=I.REGop r2,rc=d}]) | ||
234 : | val sh3addv = SOME(fn {r1,r2,d} => | ||
235 : | [I.OPERATE{oper=I.S8ADDL,ra=r1,rb=I.REGop r2,rc=d}]) | ||
236 : | ) | ||
237 : | monnier | 429 | structure Mulu32 = Mul32(val signed = false) |
238 : | structure Muls32 = Mul32(val signed = true) | ||
239 : | monnier | 409 | |
240 : | (* signed, trapping version of multiply and divide *) | ||
241 : | structure Mult64 = Multiply64 | ||
242 : | (val trapping = true | ||
243 : | val multCost = multCost | ||
244 : | fun addv{r1,r2,d} = [I.OPERATEV{oper=I.ADDQV,ra=r1,rb=I.REGop r2,rc=d}] | ||
245 : | fun subv{r1,r2,d} = [I.OPERATEV{oper=I.SUBQV,ra=r1,rb=I.REGop r2,rc=d}] | ||
246 : | val sh1addv = NONE | ||
247 : | val sh2addv = NONE | ||
248 : | val sh3addv = NONE | ||
249 : | ) | ||
250 : | monnier | 429 | (val signed = true) |
251 : | monnier | 409 | |
252 : | (* unsigned, non-trapping version of multiply and divide *) | ||
253 : | monnier | 429 | functor Mul64 = Multiply64 |
254 : | monnier | 409 | (val trapping = false |
255 : | val multCost = multCost | ||
256 : | fun addv{r1,r2,d} = [I.OPERATE{oper=I.ADDQ,ra=r1,rb=I.REGop r2,rc=d}] | ||
257 : | fun subv{r1,r2,d} = [I.OPERATE{oper=I.SUBQ,ra=r1,rb=I.REGop r2,rc=d}] | ||
258 : | val sh1addv = NONE | ||
259 : | val sh2addv = SOME(fn {r1,r2,d} => | ||
260 : | [I.OPERATE{oper=I.S4ADDQ,ra=r1,rb=I.REGop r2,rc=d}]) | ||
261 : | val sh3addv = SOME(fn {r1,r2,d} => | ||
262 : | [I.OPERATE{oper=I.S8ADDQ,ra=r1,rb=I.REGop r2,rc=d}]) | ||
263 : | ) | ||
264 : | monnier | 429 | structure Mulu64 = Mul64(val signed = false) |
265 : | structure Muls64 = Mul64(val signed = true) | ||
266 : | monnier | 409 | |
267 : | (* | ||
268 : | * The main stuff | ||
269 : | *) | ||
270 : | |||
271 : | datatype times4or8 = TIMES1 | ||
272 : | | TIMES4 | ||
273 : | | TIMES8 | ||
274 : | datatype zeroOne = ZERO | ONE | OTHER | ||
275 : | datatype commutative = COMMUTE | NOCOMMUTE | ||
276 : | |||
277 : | fun selectInstructions | ||
278 : | monnier | 429 | (S.STREAM{emit,beginCluster,endCluster, |
279 : | defineLabel,entryLabel,pseudoOp,annotation, | ||
280 : | monnier | 469 | exitBlock,phi,alias,comment,...}) = |
281 : | monnier | 409 | let |
282 : | infix || && << >> ~>> | ||
283 : | |||
284 : | val op || = W32.orb | ||
285 : | val op && = W32.andb | ||
286 : | val op << = W32.<< | ||
287 : | val op >> = W32.>> | ||
288 : | val op ~>> = W32.~>> | ||
289 : | |||
290 : | val itow = Word.fromInt | ||
291 : | val wtoi = Word.toIntX | ||
292 : | |||
293 : | val zeroFR = C.FPReg 31 | ||
294 : | val zeroEA = I.Direct zeroR | ||
295 : | val zeroT = T.LI 0 | ||
296 : | |||
297 : | val newReg = C.newReg | ||
298 : | val newFreg = C.newFreg | ||
299 : | |||
300 : | val trapb = [I.TRAPB] | ||
301 : | |||
302 : | (* Choose the appropriate rounding mode to generate. | ||
303 : | * This stuff is used to support the alpha32x SML/NJ backend. | ||
304 : | monnier | 429 | * |
305 : | * | ||
306 : | * Floating point rounding mode. | ||
307 : | * When this is set to true, we use the /SU rounding mode | ||
308 : | * (chopped towards zero) for floating point arithmetic. | ||
309 : | * This flag is only used to support the old alpha32x backend. | ||
310 : | * | ||
311 : | * Otherwise, we use /SUD. This is the default for SML/NJ. | ||
312 : | * | ||
313 : | monnier | 409 | *) |
314 : | monnier | 429 | val useSU = false |
315 : | monnier | 409 | val (ADDT,SUBT,MULT,DIVT) = |
316 : | if useSU then (I.ADDTSU,I.SUBTSU,I.MULTSU,I.DIVTSU) | ||
317 : | else (I.ADDTSUD,I.SUBTSUD,I.MULTSUD,I.DIVTSUD) | ||
318 : | val (ADDS,SUBS,MULS,DIVS) = | ||
319 : | if useSU then (I.ADDSSU,I.SUBSSU,I.MULSSU,I.DIVSSU) | ||
320 : | else (I.ADDSSUD,I.SUBSSUD,I.MULSSUD,I.DIVSSUD) | ||
321 : | |||
322 : | fun mark'(i,[]) = i | ||
323 : | | mark'(i,a::an) = mark'(I.ANNOTATION{i=i,a=a},an) | ||
324 : | fun mark(i,an) = emit(mark'(i,an)) | ||
325 : | |||
326 : | (* Fit within 16 bits? *) | ||
327 : | fun literal16 n = ~32768 <= n andalso n < 32768 | ||
328 : | fun literal16w w = | ||
329 : | let val hi = W32.~>>(w,0wx16) | ||
330 : | in hi = 0w0 orelse (W32.notb hi) = 0w0 end | ||
331 : | |||
332 : | (* emit an LDA instruction; return the register that holds the value *) | ||
333 : | fun lda(base,I.IMMop 0) = base | ||
334 : | | lda(base,offset) = | ||
335 : | let val r = newReg() | ||
336 : | in emit(I.LDA{r=r, b=base, d=offset}); r end | ||
337 : | |||
338 : | (* emit load immed *) | ||
339 : | fun loadImmed(n, base, rd, an) = | ||
340 : | monnier | 469 | if n =0 then |
341 : | move(base, rd, an) | ||
342 : | else if ~32768 <= n andalso n < 32768 then | ||
343 : | monnier | 409 | mark(I.LDA{r=rd, b=base, d=I.IMMop n},an) |
344 : | else | ||
345 : | let val w = itow n | ||
346 : | val hi = Word.~>>(w, 0w16) | ||
347 : | val lo = Word.andb(w, 0w65535) | ||
348 : | val (hi', lo') = | ||
349 : | if lo < 0w32768 then (hi, lo) else (hi+0w1, lo-0w65536) | ||
350 : | val t = lda(base,I.IMMop(wtoi lo')) | ||
351 : | in mark(I.LDAH{r=rd, b=t, d=I.IMMop(wtoi hi')},an) | ||
352 : | end | ||
353 : | |||
354 : | (* loadImmed32 is used to load int32 and word32 constants. | ||
355 : | * In either case we sign extend the 32-bit value. This is compatible | ||
356 : | * with LDL which sign extends a 32-bit valued memory location. | ||
357 : | *) | ||
358 : | monnier | 469 | and loadImmed32(0w0, base, rd, an) = |
359 : | move(base, rd, an) | ||
360 : | monnier | 409 | | loadImmed32(n, base, rd, an) = let |
361 : | val low = W32.andb(n, 0w65535) (* unsigned (0 .. 65535) *) | ||
362 : | val high = W32.~>>(n, 0w16) (* signed (~32768 .. 32768] *) | ||
363 : | fun loadimmed(0, high) = | ||
364 : | mark(I.LDAH{r=rd, b=base, d=I.IMMop(high)},an) | ||
365 : | | loadimmed(low, 0) = | ||
366 : | mark(I.LDA{r=rd, b=base, d=I.IMMop(low)},an) | ||
367 : | | loadimmed(low, high) = | ||
368 : | (emit(I.LDA{r=rd, b=base, d=I.IMMop(low)}); | ||
369 : | mark(I.LDAH{r=rd, b=rd, d=I.IMMop(high)},an)) | ||
370 : | in | ||
371 : | if W32.<(low, 0w32768) then | ||
372 : | loadimmed(W32.toInt low, W32.toIntX high) | ||
373 : | else let (* low = (32768 .. 65535) *) | ||
374 : | val lowsgn = W32.-(low, 0w65536) (* signed (~1 .. ~32768) *) | ||
375 : | val highsgn = W32.+(high, 0w1) (* (~32768 .. 32768) *) | ||
376 : | val ilow = W32.toIntX lowsgn | ||
377 : | val ihigh = W32.toIntX highsgn | ||
378 : | in | ||
379 : | if ihigh <> 32768 then loadimmed(ilow, ihigh) | ||
380 : | else | ||
381 : | let val tmpR1 = newReg() | ||
382 : | val tmpR2 = newReg() | ||
383 : | monnier | 469 | val tmpR3 = newReg() |
384 : | monnier | 409 | in |
385 : | (* you gotta do what you gotta do! *) | ||
386 : | monnier | 469 | emit(I.LDA{r=tmpR3, b=base, d=I.IMMop(ilow)}); |
387 : | emit(I.OPERATE{oper=I.ADDQ, ra=zeroR, rb=I.IMMop 1, rc=tmpR1}); | ||
388 : | monnier | 409 | emit(I.OPERATE{oper=I.SLL, ra=tmpR1, rb=I.IMMop 31, rc=tmpR2}); |
389 : | monnier | 469 | mark(I.OPERATE{oper=I.ADDQ, ra=tmpR2, rb=I.REGop tmpR3, |
390 : | rc=rd},an) | ||
391 : | monnier | 409 | end |
392 : | end | ||
393 : | end | ||
394 : | |||
395 : | (* emit load immed *) | ||
396 : | monnier | 469 | and loadConst(c,d,an) = mark(I.LDA{r=d,b=zeroR,d=I.CONSTop c},an) |
397 : | monnier | 409 | |
398 : | (* emit load label *) | ||
399 : | monnier | 469 | and loadLabel(l,d,an) = mark(I.LDA{r=d,b=zeroR,d=I.LABop l},an) |
400 : | monnier | 409 | |
401 : | (* emit a copy *) | ||
402 : | monnier | 469 | and copy(dst,src,an) = |
403 : | monnier | 409 | mark(I.COPY{dst=dst,src=src,impl=ref NONE, |
404 : | tmp=case dst of | ||
405 : | [_] => NONE | _ => SOME(I.Direct(newReg()))},an) | ||
406 : | |||
407 : | (* emit a floating point copy *) | ||
408 : | monnier | 469 | and fcopy(dst,src,an) = |
409 : | monnier | 409 | mark(I.FCOPY{dst=dst,src=src,impl=ref NONE, |
410 : | tmp=case dst of | ||
411 : | [_] => NONE | _ => SOME(I.FDirect(newFreg()))},an) | ||
412 : | |||
413 : | monnier | 469 | and move(s,d,an) = |
414 : | monnier | 409 | if s = d orelse d = zeroR then () else |
415 : | mark(I.COPY{dst=[d],src=[s],impl=ref NONE,tmp=NONE},an) | ||
416 : | |||
417 : | monnier | 469 | and fmove(s,d,an) = |
418 : | monnier | 409 | if s = d orelse d = zeroFR then () else |
419 : | mark(I.FCOPY{dst=[d],src=[s],impl=ref NONE,tmp=NONE},an) | ||
420 : | |||
421 : | (* emit an sign extension op *) | ||
422 : | monnier | 469 | and signExt32(r,d) = |
423 : | monnier | 409 | emit(I.OPERATE{oper=I.SGNXL,ra=r,rb=zeroOpn,rc=d}) |
424 : | |||
425 : | (* emit an commutative arithmetic op *) | ||
426 : | monnier | 469 | and commArith(opcode,a,b,d,an) = |
427 : | monnier | 409 | case (opn a,opn b) of |
428 : | (I.REGop r,i) => mark(I.OPERATE{oper=opcode,ra=r,rb=i,rc=d},an) | ||
429 : | | (i,I.REGop r) => mark(I.OPERATE{oper=opcode,ra=r,rb=i,rc=d},an) | ||
430 : | | (r,i) => mark(I.OPERATE{oper=opcode,ra=reduceOpn r,rb=i,rc=d},an) | ||
431 : | |||
432 : | (* emit an arithmetic op *) | ||
433 : | and arith(opcode,a,b,d,an) = | ||
434 : | mark(I.OPERATE{oper=opcode,ra=expr a,rb=opn b,rc=d},an) | ||
435 : | and arith'(opcode,a,b,d,an) = | ||
436 : | let val rb = opn b | ||
437 : | val ra = expr a | ||
438 : | in mark(I.OPERATE{oper=opcode,ra=ra,rb=rb,rc=d},an) end | ||
439 : | |||
440 : | (* emit a trapping commutative arithmetic op *) | ||
441 : | and commArithTrap(opcode,a,b,d,an) = | ||
442 : | (case (opn a,opn b) of | ||
443 : | (I.REGop r,i) => mark(I.OPERATEV{oper=opcode,ra=r,rb=i,rc=d},an) | ||
444 : | | (i,I.REGop r) => mark(I.OPERATEV{oper=opcode,ra=r,rb=i,rc=d},an) | ||
445 : | | (r,i) => mark(I.OPERATEV{oper=opcode,ra=reduceOpn r,rb=i,rc=d},an); | ||
446 : | emit(I.TRAPB) | ||
447 : | ) | ||
448 : | |||
449 : | (* emit a trapping arithmetic op *) | ||
450 : | and arithTrap(opcode,a,b,d,an) = | ||
451 : | (mark(I.OPERATEV{oper=opcode,ra=expr a,rb=opn b,rc=d},an); | ||
452 : | emit(I.TRAPB) | ||
453 : | ) | ||
454 : | |||
455 : | (* convert an operand into a register *) | ||
456 : | and reduceOpn(I.REGop r) = r | ||
457 : | | reduceOpn(I.IMMop 0) = zeroR | ||
458 : | | reduceOpn opn = | ||
459 : | let val d = newReg() | ||
460 : | in emit(I.OPERATE{oper=I.BIS,ra=zeroR,rb=opn,rc=d}); d end | ||
461 : | |||
462 : | (* convert an expression into an operand *) | ||
463 : | and opn(T.REG(_,r)) = I.REGop r | ||
464 : | | opn(e as T.LI n) = | ||
465 : | if n <= 255 andalso n >= 0 then I.IMMop n | ||
466 : | else let val tmpR = newReg() | ||
467 : | in loadImmed(n,zeroR,tmpR,[]); I.REGop tmpR end | ||
468 : | | opn(e as T.LI32 w) = | ||
469 : | if w <= 0w255 then I.IMMop(W32.toIntX w) | ||
470 : | else let val tmpR = newReg() | ||
471 : | in loadImmed32(w,zeroR,tmpR,[]); I.REGop tmpR end | ||
472 : | | opn(T.CONST c) = I.CONSTop c | ||
473 : | | opn e = I.REGop(expr e) | ||
474 : | |||
475 : | (* compute base+displacement from an expression *) | ||
476 : | and addr exp = | ||
477 : | case exp of | ||
478 : | T.ADD(_,e,T.LI n) => makeEA(expr e,n) | ||
479 : | | T.ADD(_,T.LI n,e) => makeEA(expr e,n) | ||
480 : | | T.ADD(_,e,T.CONST c) => (expr e,I.CONSTop c) | ||
481 : | | T.ADD(_,T.CONST c,e) => (expr e,I.CONSTop c) | ||
482 : | | T.SUB(_,e,T.LI n) => makeEA(expr e,~n) | ||
483 : | | e => makeEA(expr e,0) | ||
484 : | |||
485 : | (* compute base+displacement+small offset *) | ||
486 : | and offset(base,disp as I.IMMop n,off) = | ||
487 : | let val n' = n+off | ||
488 : | in if literal16 n' then (base,I.IMMop n') | ||
489 : | else | ||
490 : | let val tmp = newReg() | ||
491 : | in emit(I.OPERATE{oper=I.ADDQ,ra=base,rb=disp,rc=tmp}); | ||
492 : | (tmp,I.IMMop off) | ||
493 : | end | ||
494 : | end | ||
495 : | | offset(base,disp,off) = | ||
496 : | let val tmp = newReg() | ||
497 : | in emit(I.OPERATE{oper=I.ADDQ,ra=base,rb=disp,rc=tmp}); | ||
498 : | (tmp,I.IMMop off) | ||
499 : | end | ||
500 : | |||
501 : | (* check if base offset *) | ||
502 : | and makeEA(base, offset) = | ||
503 : | if ~32768 <= offset andalso offset <= 32767 then (base, I.IMMop offset) | ||
504 : | else | ||
505 : | let val tmpR = newReg() | ||
506 : | (* unsigned low 16 bits *) | ||
507 : | val low = wtoi(Word.andb(itow offset, 0wxffff)) | ||
508 : | val high = offset div 65536 | ||
509 : | val (lowsgn, highsgn) = (* Sign-extend *) | ||
510 : | if low <= 32767 then (low, high) else (low -65536, high+1) | ||
511 : | in | ||
512 : | (emit(I.LDAH{r=tmpR, b=base, d=I.IMMop highsgn}); | ||
513 : | (tmpR, I.IMMop lowsgn)) | ||
514 : | end | ||
515 : | |||
516 : | (* look for multiply by 4 and 8 of the given type *) | ||
517 : | and times4or8(ty,e) = | ||
518 : | let fun f(t,a,n) = if t = ty then | ||
519 : | if n = 4 then (TIMES4,a) | ||
520 : | else if n = 8 then (TIMES8,a) | ||
521 : | else (TIMES1,e) | ||
522 : | else (TIMES1,e) | ||
523 : | fun g(t,a,n) = if t = ty then | ||
524 : | if n = 0w4 then (TIMES4,a) | ||
525 : | else if n = 0w8 then (TIMES8,a) | ||
526 : | else (TIMES1,e) | ||
527 : | else (TIMES1,e) | ||
528 : | fun u(t,a,n) = if t = ty then | ||
529 : | if n = 2 then (TIMES4,a) | ||
530 : | else if n = 3 then (TIMES8,a) | ||
531 : | else (TIMES1,e) | ||
532 : | else (TIMES1,e) | ||
533 : | fun v(t,a,n) = if t = ty then | ||
534 : | if n = 0w2 then (TIMES4,a) | ||
535 : | else if n = 0w3 then (TIMES8,a) | ||
536 : | else (TIMES1,e) | ||
537 : | else (TIMES1,e) | ||
538 : | in case e of | ||
539 : | T.MULU(t,a,T.LI n) => f(t,a,n) | ||
540 : | | T.MULU(t,a,T.LI32 n) => g(t,a,n) | ||
541 : | | T.MULS(t,T.LI n,a) => f(t,a,n) | ||
542 : | | T.MULS(t,T.LI32 n,a) => g(t,a,n) | ||
543 : | | T.SLL(t,a,T.LI n) => u(t,a,n) | ||
544 : | | T.SLL(t,a,T.LI32 n) => v(t,a,n) | ||
545 : | | _ => (TIMES1,e) | ||
546 : | end | ||
547 : | |||
548 : | (* generate an add instruction | ||
549 : | * ***OPT*** look for multiply by 4 and 8 and use the S4ADD and S8ADD | ||
550 : | * forms. | ||
551 : | *) | ||
552 : | and plus(ty,add,s4add,s8add,a,b,d,an) = | ||
553 : | (case times4or8(ty,a) of | ||
554 : | (TIMES4,a) => arith(s4add,a,b,d,an) | ||
555 : | | (TIMES8,a) => arith(s8add,a,b,d,an) | ||
556 : | | _ => | ||
557 : | case times4or8(ty,b) of | ||
558 : | (TIMES4,b) => arith'(s4add,b,a,d,an) | ||
559 : | | (TIMES8,b) => arith'(s8add,b,a,d,an) | ||
560 : | | _ => commArith(add,a,b,d,an) | ||
561 : | ) | ||
562 : | |||
563 : | (* generate a subtract instruction | ||
564 : | * ***OPT*** look for multiply by 4 and 8 | ||
565 : | *) | ||
566 : | and minus(ty,sub,s4sub,s8sub,a,b,d,an) = | ||
567 : | (case times4or8(ty,a) of | ||
568 : | (TIMES4,a) => arith(s4sub,a,b,d,an) | ||
569 : | | (TIMES8,a) => arith(s8sub,a,b,d,an) | ||
570 : | | _ => | ||
571 : | monnier | 429 | if ty = 64 then |
572 : | monnier | 409 | (case b of |
573 : | (* use LDA to handle subtraction when possible | ||
574 : | * Note: this may have sign extension problems later. | ||
575 : | *) | ||
576 : | T.LI i => (loadImmed(~i,expr a,d,an) handle Overflow => | ||
577 : | arith(sub,a,b,d,an)) | ||
578 : | | _ => arith(sub,a,b,d,an) | ||
579 : | monnier | 429 | ) else arith(sub,a,b,d,an) |
580 : | monnier | 409 | ) |
581 : | |||
582 : | (* look for special constants *) | ||
583 : | and wordOpn(T.LI n) = SOME(W32.fromInt n) | ||
584 : | | wordOpn(T.LI32 w) = SOME w | ||
585 : | | wordOpn e = NONE | ||
586 : | |||
587 : | monnier | 429 | (* look for special byte mask constants |
588 : | * IMPORTANT: we must ALWAYS keep the sign bit! | ||
589 : | *) | ||
590 : | and byteMask(_,SOME 0wx00000000) = 0xff | ||
591 : | | byteMask(_,SOME 0wx000000ff) = 0xfe | ||
592 : | | byteMask(_,SOME 0wx0000ff00) = 0xfd | ||
593 : | | byteMask(_,SOME 0wx0000ffff) = 0xfc | ||
594 : | | byteMask(_,SOME 0wx00ff0000) = 0xfb | ||
595 : | | byteMask(_,SOME 0wx00ff00ff) = 0xfa | ||
596 : | | byteMask(_,SOME 0wx00ffff00) = 0xf9 | ||
597 : | | byteMask(_,SOME 0wx00ffffff) = 0xf8 | ||
598 : | | byteMask(ty,SOME 0wxff000000) = if ty = 64 then 0xf7 else 0x07 | ||
599 : | | byteMask(ty,SOME 0wxff0000ff) = if ty = 64 then 0xf6 else 0x06 | ||
600 : | | byteMask(ty,SOME 0wxff00ff00) = if ty = 64 then 0xf5 else 0x05 | ||
601 : | | byteMask(ty,SOME 0wxff00ffff) = if ty = 64 then 0xf4 else 0x04 | ||
602 : | | byteMask(ty,SOME 0wxffff0000) = if ty = 64 then 0xf3 else 0x03 | ||
603 : | | byteMask(ty,SOME 0wxffff00ff) = if ty = 64 then 0xf2 else 0x02 | ||
604 : | | byteMask(ty,SOME 0wxffffff00) = if ty = 64 then 0xf1 else 0x01 | ||
605 : | | byteMask(ty,SOME 0wxffffffff) = if ty = 64 then 0xf0 else 0x00 | ||
606 : | | byteMask _ = ~1 | ||
607 : | monnier | 409 | |
608 : | (* generate an and instruction | ||
609 : | * look for special masks. | ||
610 : | *) | ||
611 : | and andb(ty,a,b,d,an) = | ||
612 : | case byteMask(ty,wordOpn a) of | ||
613 : | monnier | 429 | ~1 => (case byteMask(ty,wordOpn b) of |
614 : | ~1 => commArith(I.AND,a,b,d,an) | ||
615 : | | mask => arith(I.ZAP,a,T.LI mask,d,an) | ||
616 : | ) | ||
617 : | | mask => arith(I.ZAP,b,T.LI mask,d,an) | ||
618 : | monnier | 409 | |
619 : | (* generate sll/sra/srl *) | ||
620 : | and sll32(a,b,d,an) = | ||
621 : | case wordOpn b of | ||
622 : | SOME 0w0 => doExpr(a,d,an) | ||
623 : | | SOME 0w1 => | ||
624 : | let val r = T.REG(32,expr a) in arith(I.ADDL,r,r,d,an) end | ||
625 : | | SOME 0w2 => arith(I.S4ADDL,a,zeroT,d,an) | ||
626 : | | SOME 0w3 => arith(I.S8ADDL,a,zeroT,d,an) | ||
627 : | | _ => let val t = newReg() | ||
628 : | in arith(I.SLL,a,b,t,an); | ||
629 : | signExt32(t,d) | ||
630 : | end | ||
631 : | |||
632 : | and sll64(a,b,d,an) = | ||
633 : | case wordOpn b of | ||
634 : | SOME 0w0 => doExpr(a,d,an) | ||
635 : | | SOME 0w1 => | ||
636 : | let val r = T.REG(64,expr a) in arith(I.ADDQ,r,r,d,an) end | ||
637 : | | SOME 0w2 => arith(I.S4ADDQ,a,zeroT,d,an) | ||
638 : | | SOME 0w3 => arith(I.S8ADDQ,a,zeroT,d,an) | ||
639 : | | _ => arith(I.SLL,a,b,d,an) | ||
640 : | |||
641 : | and sra32(a,b,d,an) = | ||
642 : | let val ra = expr a | ||
643 : | val rb = opn b | ||
644 : | val t = newReg() | ||
645 : | monnier | 475 | in (* On the alpha, all 32 bit values are already sign extended. |
646 : | * So no sign extension is necessary. | ||
647 : | * signExt32(ra,t); | ||
648 : | * mark(I.OPERATE{oper=I.SRA,ra=t,rb=rb,rc=d},an) | ||
649 : | *) | ||
650 : | mark(I.OPERATE{oper=I.SRA,ra=ra,rb=rb,rc=d},an) | ||
651 : | monnier | 409 | end |
652 : | |||
653 : | and sra64(a,b,d,an) = | ||
654 : | mark(I.OPERATE{oper=I.SRA,ra=expr a,rb=opn b,rc=d},an) | ||
655 : | |||
656 : | and srl32(a,b,d,an) = | ||
657 : | let val ra = expr a | ||
658 : | val rb = opn b | ||
659 : | val t = newReg() | ||
660 : | in emit(I.OPERATE{oper=I.ZAP,ra=ra,rb=I.IMMop 0xf0,rc=t}); | ||
661 : | mark(I.OPERATE{oper=I.SRL,ra=t,rb=rb,rc=d},an) | ||
662 : | end | ||
663 : | |||
664 : | and srl64(a,b,d,an) = | ||
665 : | mark(I.OPERATE{oper=I.SRL,ra=expr a,rb=opn b,rc=d},an) | ||
666 : | |||
667 : | (* | ||
668 : | * Generic multiply. | ||
669 : | * We first try to use the multiply by constant heuristic | ||
670 : | *) | ||
671 : | and multiply(ty,gen,genConst,e1,e2,rd,trapb,an) = | ||
672 : | let fun nonconst(e1,e2) = | ||
673 : | let val instr = | ||
674 : | case (opn e1,opn e2) of | ||
675 : | (i,I.REGop r) => gen{ra=r,rb=i,rc=rd} | ||
676 : | | (I.REGop r,i) => gen{ra=r,rb=i,rc=rd} | ||
677 : | | (r,i) => gen{ra=reduceOpn r,rb=i,rc=rd} | ||
678 : | in mark'(instr,an)::trapb end | ||
679 : | fun const(e,i) = | ||
680 : | let val r = expr e | ||
681 : | in if !useMultByConst andalso i >= 0 andalso i < 256 then | ||
682 : | mark'(gen{ra=r,rb=I.IMMop i,rc=rd},an)::trapb | ||
683 : | else | ||
684 : | (genConst{r=r,i=i,d=rd}@trapb | ||
685 : | handle _ => nonconst(T.REG(ty,r),T.LI i)) | ||
686 : | end | ||
687 : | fun constw(e,i) = const(e,Word32.toInt i) | ||
688 : | handle _ => nonconst(e,T.LI32 i) | ||
689 : | val instrs = | ||
690 : | case (e1,e2) of | ||
691 : | (e1,T.LI i) => const(e1,i) | ||
692 : | | (e1,T.LI32 i) => constw(e1,i) | ||
693 : | | (T.LI i,e2) => const(e2,i) | ||
694 : | | (T.LI32 i,e2) => constw(e2,i) | ||
695 : | | _ => nonconst(e1,e2) | ||
696 : | in app emit instrs | ||
697 : | end | ||
698 : | |||
699 : | (* Round r towards zero. | ||
700 : | * I generate the following sequence of code, which should get | ||
701 : | * mapped into conditional moves. | ||
702 : | * | ||
703 : | * d <- r + i; | ||
704 : | * d <- if (r > 0) then r else d | ||
705 : | *) | ||
706 : | and roundToZero{ty,r,i,d} = | ||
707 : | (doStmt(T.MV(ty,d,T.ADD(ty,T.REG(ty,r),T.LI i))); | ||
708 : | doStmt(T.MV(ty,d,T.COND(ty,T.CMP(ty,T.GE,T.REG(ty,r),T.LI 0), | ||
709 : | T.REG(ty,r),T.REG(ty,d)))) | ||
710 : | ) | ||
711 : | |||
712 : | (* | ||
713 : | * Generic division. | ||
714 : | * We first try to use the division by constant heuristic | ||
715 : | *) | ||
716 : | and divide(ty,pseudo,genDiv,e1,e2,rd,an) = | ||
717 : | let fun nonconst(e1,e2) = | ||
718 : | pseudo({ra=expr e1,rb=opn e2,rc=rd},reduceOpn) | ||
719 : | |||
720 : | fun const(e,i) = | ||
721 : | let val r = expr e | ||
722 : | in genDiv{mode=T.TO_ZERO,roundToZero=roundToZero} | ||
723 : | {r=r,i=i,d=rd} | ||
724 : | handle _ => nonconst(T.REG(ty,r),T.LI i) | ||
725 : | end | ||
726 : | fun constw(e,i) = const(e,Word32.toInt i) | ||
727 : | handle _ => nonconst(e,T.LI32 i) | ||
728 : | val instrs = | ||
729 : | case e2 of | ||
730 : | T.LI i => const(e1,i) | ||
731 : | | T.LI32 i => constw(e1,i) | ||
732 : | | _ => nonconst(e1,e2) | ||
733 : | in app emit instrs | ||
734 : | end | ||
735 : | |||
736 : | |||
737 : | (* | ||
738 : | and multTrap(MULV,ADD,ADDV,e1,e2,rd,an) = (* signed multiply and trap *) | ||
739 : | let val ADD = fn {ra,rb,rc} => I.OPERATE{oper=ADD,ra=ra,rb=rb,rc=rc} | ||
740 : | val ADDV = fn {ra,rb,rc} => I.OPERATEV{oper=ADDV,ra=ra,rb=rb,rc=rc} | ||
741 : | val MULV = fn {ra,rb,rc} => I.OPERATEV{oper=MULV,ra=ra,rb=rb,rc=rc} | ||
742 : | in multiply(MULV,ADD,ADDV,e1,e2,rd,an); | ||
743 : | emit(I.TRAPB) | ||
744 : | end | ||
745 : | |||
746 : | and mulu(MUL,ADD,e1,e2,rd,an) = (* unsigned multiply *) | ||
747 : | let val ADD = fn {ra,rb,rc} => I.OPERATE{oper=ADD,ra=ra,rb=rb,rc=rc} | ||
748 : | val MUL = fn {ra,rb,rc} => I.OPERATE{oper=MUL,ra=ra,rb=rb,rc=rc} | ||
749 : | in multiply(MUL,ADD,ADD,e1,e2,rd,an) | ||
750 : | end | ||
751 : | |||
752 : | (* Multiplication *) | ||
753 : | and multiply(MULV, ADD, ADDV, e1, e2, rd, an) = | ||
754 : | let val reg = expr e1 | ||
755 : | val opn = opn e2 | ||
756 : | fun emitMulvImmed (reg, 0, rd) = | ||
757 : | emit(I.LDA{r=rd, b=zeroR, d=I.IMMop 0}) | ||
758 : | | emitMulvImmed (reg, 1, rd) = | ||
759 : | emit(ADD{ra=reg, rb=zeroOpn, rc=rd}) | ||
760 : | | emitMulvImmed (reg, multiplier, rd) = | ||
761 : | let fun log2 0w1 = 0 | log2 n = 1 + (log2 (Word.>> (n, 0w1))) | ||
762 : | fun exp2 n = Word.<<(0w1, n) | ||
763 : | fun bitIsSet (x,n) = Word.andb(x,exp2 n) <> 0w0 | ||
764 : | fun loop (~1) = () | ||
765 : | | loop n = | ||
766 : | (if bitIsSet(itow multiplier, itow n) then | ||
767 : | emit(ADDV{ra=reg,rb=I.REGop rd,rc=rd}) | ||
768 : | else (); | ||
769 : | if n>0 then | ||
770 : | emit(ADDV{ra=rd,rb=I.REGop rd,rc=rd}) | ||
771 : | else (); | ||
772 : | loop (n-1)) | ||
773 : | in emit(ADDV{ra=reg, rb=I.REGop reg, rc=rd}); | ||
774 : | loop ((log2 (itow multiplier)) - 1) | ||
775 : | end | ||
776 : | in case opn of | ||
777 : | (I.IMMop multiplier) => emitMulvImmed (reg, multiplier, rd) | ||
778 : | | _ => mark(MULV{ra=reg, rb=opn, rc=rd},an) | ||
779 : | (*esac*) | ||
780 : | end | ||
781 : | *) | ||
782 : | |||
783 : | (* generate pseudo instruction *) | ||
784 : | and pseudo(instr,e1,e2,rc) = | ||
785 : | app emit (instr({ra=expr e1,rb=opn e2,rc=rc}, reduceOpn)) | ||
786 : | |||
787 : | (* generate a load *) | ||
788 : | and load(ldOp,ea,d,mem,an) = | ||
789 : | let val (base,disp) = addr ea | ||
790 : | in mark(I.LOAD{ldOp=ldOp,r=d,b=base,d=disp,mem=mem},an) end | ||
791 : | |||
792 : | (* generate a load with zero extension *) | ||
793 : | and loadZext(ea,rd,mem,EXT,an) = | ||
794 : | let val (b, d) = addr ea | ||
795 : | val t1 = newReg() | ||
796 : | val _ = mark(I.LOAD{ldOp=I.LDQ_U, r=t1, b=b, d=d, mem=mem},an); | ||
797 : | val t2 = lda(b,d) | ||
798 : | in emit(I.OPERATE{oper=EXT, ra=t1, rb=I.REGop t2, rc=rd}) end | ||
799 : | |||
800 : | (* generate a load with sign extension *) | ||
801 : | and loadSext(ea,rd,mem,off,EXT,shift,an) = | ||
802 : | let val (b, d) = addr ea | ||
803 : | val (b',d') = offset(b,d,off) | ||
804 : | val t1 = newReg() | ||
805 : | val t2 = newReg() | ||
806 : | val t3 = newReg() | ||
807 : | in mark(I.LOAD{ldOp=I.LDQ_U, r=t1, b=b, d=d, mem=mem},an); | ||
808 : | emit(I.LDA{r=t2, b=b', d=d'}); | ||
809 : | emit(I.OPERATE{oper=EXT, ra=t1, rb=I.REGop t2, rc=t3}); | ||
810 : | emit(I.OPERATE{oper=I.SRA, ra=t3, rb=I.IMMop shift, rc=rd}) | ||
811 : | end | ||
812 : | |||
813 : | (* generate a load byte with zero extension (page 4-48) *) | ||
814 : | and load8(ea,rd,mem,an) = loadZext(ea,rd,mem,I.EXTBL,an) | ||
815 : | |||
816 : | (* generate a load byte with sign extension (page 4-48) *) | ||
817 : | and load8s(ea,rd,mem,an) = loadSext(ea,rd,mem,1,I.EXTQH,56,an) | ||
818 : | |||
819 : | (* generate a load 16 bit *) | ||
820 : | and load16(ea,rd,mem,an) = loadZext(ea,rd,mem,I.EXTWL,an) | ||
821 : | |||
822 : | (* generate a load 16 bit with sign extension *) | ||
823 : | and load16s(ea,rd,mem,an) = loadSext(ea,rd,mem,2,I.EXTQH,48,an) | ||
824 : | |||
825 : | (* generate a load 32 bit with sign extension *) | ||
826 : | and load32s(ea,rd,mem,an) = load(I.LDL,ea,rd,mem,an) | ||
827 : | |||
828 : | (* generate a floating point load *) | ||
829 : | and fload(ldOp,ea,d,mem,an) = | ||
830 : | let val (base,disp) = addr ea | ||
831 : | in mark(I.FLOAD{ldOp=ldOp,r=d,b=base,d=disp,mem=mem},an) end | ||
832 : | |||
833 : | (* generate a store *) | ||
834 : | and store(stOp,ea,data,mem,an) = | ||
835 : | let val (base,disp) = addr ea | ||
836 : | in mark(I.STORE{stOp=stOp,r=expr data,b=base,d=disp,mem=mem},an) end | ||
837 : | |||
838 : | (* generate an store8 or store16 *) | ||
839 : | and storeUnaligned(ea,data,mem,INS,MSK,an) = | ||
840 : | let val (base,disp) = addr ea | ||
841 : | val data = expr data | ||
842 : | val t1 = newReg() | ||
843 : | val t3 = newReg() | ||
844 : | val t4 = newReg() | ||
845 : | val t5 = newReg() | ||
846 : | val _ = emit(I.LOAD{ldOp=I.LDQ_U, r=t1, b=base, d=disp, mem=mem}) | ||
847 : | val t2 = lda(base,disp) | ||
848 : | in emit(I.OPERATE{oper=INS, ra=data, rb=I.REGop(t2), rc=t3}); | ||
849 : | emit(I.OPERATE{oper=MSK, ra=t1, rb=I.REGop(t2), rc=t4}); | ||
850 : | emit(I.OPERATE{oper=I.BIS, ra=t4, rb=I.REGop(t3), rc=t5}); | ||
851 : | mark(I.STORE{stOp=I.STQ_U, r=t5, b=base, d=disp, mem=mem},an) | ||
852 : | end | ||
853 : | |||
854 : | (* generate a store byte *) | ||
855 : | and store8(ea,data,mem,an) = | ||
856 : | storeUnaligned(ea,data,mem,I.INSBL,I.MSKBL,an) | ||
857 : | |||
858 : | (* generate a store16 *) | ||
859 : | and store16(ea,data,mem,an) = | ||
860 : | storeUnaligned(ea,data,mem,I.INSWL,I.MSKWL,an) | ||
861 : | |||
862 : | monnier | 429 | (* generate conversion from floating point to integer *) |
863 : | and cvtf2i(pseudo,rounding,e,rd,an) = | ||
864 : | app emit (pseudo{mode=rounding, fs=fexpr e, rd=rd}) | ||
865 : | |||
866 : | monnier | 409 | (* generate an expression and return the register that holds the result *) |
867 : | and expr(T.REG(_,r)) = r | ||
868 : | | expr(T.LI 0) = zeroR | ||
869 : | | expr(T.LI32 0w0) = zeroR | ||
870 : | | expr e = let val r = newReg() | ||
871 : | in doExpr(e,r,[]); r end | ||
872 : | |||
873 : | (* generate an expression that targets register d *) | ||
874 : | monnier | 429 | and doExpr(exp,d,an) = |
875 : | case exp of | ||
876 : | monnier | 409 | T.REG(_,r) => move(r,d,an) |
877 : | | T.LI n => loadImmed(n,zeroR,d,an) | ||
878 : | | T.LI32 w => loadImmed32(w,zeroR,d,an) | ||
879 : | | T.LABEL l => loadLabel(l,d,an) | ||
880 : | | T.CONST c => loadConst(c,d,an) | ||
881 : | |||
882 : | (* special optimizations for additions and subtraction | ||
883 : | * Question: using LDA for all widths is not really correct | ||
884 : | * since the result may not fit into the sign extension scheme. | ||
885 : | *) | ||
886 : | monnier | 429 | | T.ADD(64,e,T.LABEL le) => mark(I.LDA{r=d,b=expr e,d=I.LABop le},an) |
887 : | | T.ADD(64,T.LABEL le,e) => mark(I.LDA{r=d,b=expr e,d=I.LABop le},an) | ||
888 : | | T.ADD(64,e,T.CONST c) => mark(I.LDA{r=d,b=expr e,d=I.CONSTop c},an) | ||
889 : | | T.ADD(64,T.CONST c,e) => mark(I.LDA{r=d,b=expr e,d=I.CONSTop c},an) | ||
890 : | | T.ADD(64,e,T.LI i) => loadImmed(i, expr e, d, an) | ||
891 : | | T.ADD(64,T.LI i,e) => loadImmed(i, expr e, d, an) | ||
892 : | | T.ADD(64,e,T.LI32 i) => loadImmed32(i, expr e, d, an) | ||
893 : | | T.ADD(64,T.LI32 i,e) => loadImmed32(i, expr e, d, an) | ||
894 : | monnier | 409 | | T.SUB(_,a,(T.LI 0 | T.LI32 0w0)) => doExpr(a,d,an) |
895 : | |||
896 : | (* 32-bit support *) | ||
897 : | | T.ADD(32,a,b) => plus(32,I.ADDL,I.S4ADDL,I.S8ADDL,a,b,d,an) | ||
898 : | | T.SUB(32,a,b) => minus(32,I.SUBL,I.S4SUBL,I.S8SUBL,a,b,d,an) | ||
899 : | | T.ADDT(32,a,b) => commArithTrap(I.ADDLV,a,b,d,an) | ||
900 : | | T.SUBT(32,a,b) => arithTrap(I.SUBLV,a,b,d,an) | ||
901 : | monnier | 429 | | T.MULT(32,a,b) => |
902 : | monnier | 409 | multiply(32, |
903 : | fn{ra,rb,rc} => I.OPERATEV{oper=I.MULLV,ra=ra,rb=rb,rc=rc}, | ||
904 : | Mult32.multiply,a,b,d,trapb,an) | ||
905 : | monnier | 429 | | T.MULU(32,a,b) => |
906 : | monnier | 409 | multiply(32, |
907 : | fn{ra,rb,rc} => I.OPERATE{oper=I.MULL,ra=ra,rb=rb,rc=rc}, | ||
908 : | Mulu32.multiply,a,b,d,[],an) | ||
909 : | monnier | 429 | | T.MULS(32,a,b) => |
910 : | multiply(32, | ||
911 : | fn{ra,rb,rc} => I.OPERATE{oper=I.MULL,ra=ra,rb=rb,rc=rc}, | ||
912 : | Muls32.multiply,a,b,d,[],an) | ||
913 : | | T.DIVT(32,a,b) => divide(32,P.divlv,Mult32.divide,a,b,d,an) | ||
914 : | | T.DIVU(32,a,b) => divide(32,P.divlu,Mulu32.divide,a,b,d,an) | ||
915 : | | T.DIVS(32,a,b) => divide(32,P.divl,Muls32.divide,a,b,d,an) | ||
916 : | | T.REMT(32,a,b) => pseudo(P.remlv,a,b,d) | ||
917 : | | T.REMU(32,a,b) => pseudo(P.remlu,a,b,d) | ||
918 : | | T.REMS(32,a,b) => pseudo(P.reml,a,b,d) | ||
919 : | |||
920 : | monnier | 409 | | T.SLL(32,a,b) => sll32(a,b,d,an) |
921 : | | T.SRA(32,a,b) => sra32(a,b,d,an) | ||
922 : | | T.SRL(32,a,b) => srl32(a,b,d,an) | ||
923 : | |||
924 : | (* 64 bit support *) | ||
925 : | | T.ADD(64,a,b) => plus(64,I.ADDQ,I.S4ADDQ,I.S8ADDQ,a,b,d,an) | ||
926 : | | T.SUB(64,a,b) => minus(64,I.SUBQ,I.S4SUBQ,I.S8SUBQ,a,b,d,an) | ||
927 : | | T.ADDT(64,a,b) => commArithTrap(I.ADDQV,a,b,d,an) | ||
928 : | | T.SUBT(64,a,b) => arithTrap(I.SUBQV,a,b,d,an) | ||
929 : | monnier | 429 | | T.MULT(64,a,b) => |
930 : | monnier | 409 | multiply(64, |
931 : | fn{ra,rb,rc} => I.OPERATEV{oper=I.MULQV,ra=ra,rb=rb,rc=rc}, | ||
932 : | Mult64.multiply,a,b,d,trapb,an) | ||
933 : | monnier | 429 | | T.MULU(64,a,b) => |
934 : | monnier | 409 | multiply(64, |
935 : | fn{ra,rb,rc} => I.OPERATE{oper=I.MULQ,ra=ra,rb=rb,rc=rc}, | ||
936 : | Mulu64.multiply,a,b,d,[],an) | ||
937 : | monnier | 429 | | T.MULS(64,a,b) => |
938 : | multiply(64, | ||
939 : | fn{ra,rb,rc} => I.OPERATE{oper=I.MULQ,ra=ra,rb=rb,rc=rc}, | ||
940 : | Muls64.multiply,a,b,d,[],an) | ||
941 : | | T.DIVT(64,a,b) => divide(64,P.divqv,Mult64.divide,a,b,d,an) | ||
942 : | | T.DIVU(64,a,b) => divide(64,P.divqu,Mulu64.divide,a,b,d,an) | ||
943 : | | T.DIVS(64,a,b) => divide(64,P.divq,Muls64.divide,a,b,d,an) | ||
944 : | | T.REMT(64,a,b) => pseudo(P.remqv,a,b,d) | ||
945 : | | T.REMU(64,a,b) => pseudo(P.remqu,a,b,d) | ||
946 : | | T.REMS(64,a,b) => pseudo(P.remq,a,b,d) | ||
947 : | |||
948 : | monnier | 409 | | T.SLL(64,a,b) => sll64(a,b,d,an) |
949 : | | T.SRA(64,a,b) => sra64(a,b,d,an) | ||
950 : | | T.SRL(64,a,b) => srl64(a,b,d,an) | ||
951 : | |||
952 : | (* special bit operations with complement *) | ||
953 : | | T.ANDB(_,a,T.NOTB(_,b)) => arith(I.BIC,a,b,d,an) | ||
954 : | | T.ORB(_,a,T.NOTB(_,b)) => arith(I.ORNOT,a,b,d,an) | ||
955 : | | T.XORB(_,a,T.NOTB(_,b)) => commArith(I.EQV,a,b,d,an) | ||
956 : | | T.ANDB(_,T.NOTB(_,a),b) => arith(I.BIC,b,a,d,an) | ||
957 : | | T.ORB(_,T.NOTB(_,a),b) => arith(I.ORNOT,b,a,d,an) | ||
958 : | | T.XORB(_,T.NOTB(_,a),b) => commArith(I.EQV,b,a,d,an) | ||
959 : | | T.NOTB(_,T.XORB(_,a,b)) => commArith(I.EQV,b,a,d,an) | ||
960 : | |||
961 : | (* bit operations *) | ||
962 : | | T.ANDB(ty,a,b) => andb(ty,a,b,d,an) | ||
963 : | | T.XORB(_,a,b) => commArith(I.XOR,a,b,d,an) | ||
964 : | | T.ORB(_,a,b) => commArith(I.BIS,a,b,d,an) | ||
965 : | | T.NOTB(_,e) => arith(I.ORNOT,zeroT,e,d,an) | ||
966 : | |||
967 : | (* loads *) | ||
968 : | monnier | 475 | | T.CVTI2I(_,T.SIGN_EXTEND,_,T.LOAD(8,ea,mem)) => |
969 : | load8s(ea,d,mem,an) | ||
970 : | | T.CVTI2I(_,T.SIGN_EXTEND,_,T.LOAD(16,ea,mem)) => | ||
971 : | load16s(ea,d,mem,an) | ||
972 : | | T.CVTI2I(_,T.SIGN_EXTEND,_,T.LOAD(32,ea,mem)) => | ||
973 : | load32s(ea,d,mem,an) | ||
974 : | monnier | 409 | | T.LOAD(8,ea,mem) => load8(ea,d,mem,an) |
975 : | | T.LOAD(16,ea,mem) => load16(ea,d,mem,an) | ||
976 : | monnier | 429 | | T.LOAD(32,ea,mem) => load32s(ea,d,mem,an) |
977 : | monnier | 409 | | T.LOAD(64,ea,mem) => load(I.LDQ,ea,d,mem,an) |
978 : | |||
979 : | monnier | 429 | (* floating -> int conversion *) |
980 : | monnier | 475 | | T.CVTF2I(ty,rounding,fty,e) => |
981 : | (case (fty,ty) of | ||
982 : | monnier | 429 | (32,32) => cvtf2i(P.cvtsl,rounding,e,d,an) |
983 : | | (32,64) => cvtf2i(P.cvtsq,rounding,e,d,an) | ||
984 : | | (64,32) => cvtf2i(P.cvttl,rounding,e,d,an) | ||
985 : | | (64,64) => cvtf2i(P.cvttq,rounding,e,d,an) | ||
986 : | | _ => doExpr(Gen.compile exp,d,an) (* other cases *) | ||
987 : | ) | ||
988 : | |||
989 : | monnier | 409 | (* conversion to boolean *) |
990 : | | T.COND(_,T.CMP(ty,cond,e1,e2),T.LI 1,T.LI 0) => | ||
991 : | compare(ty,cond,e1,e2,d,an) | ||
992 : | | T.COND(_,T.CMP(ty,cond,e1,e2),T.LI 0,T.LI 1) => | ||
993 : | monnier | 475 | compare(ty,T.Util.negateCond cond,e1,e2,d,an) |
994 : | monnier | 409 | | T.COND(_,T.CMP(ty,cond,e1,e2),x,y) => |
995 : | cmove(ty,cond,e1,e2,x,y,d,an) | ||
996 : | |||
997 : | | T.SEQ(s,e) => (doStmt s; doExpr(e,d,an)) | ||
998 : | | T.MARK(e,a) => doExpr(e,d,a::an) | ||
999 : | monnier | 475 | |
1000 : | (* On the alpha: all 32 bit values are already sign extended. | ||
1001 : | * So no sign extension is necessary | ||
1002 : | *) | ||
1003 : | | T.CVTI2I(64, _, 32, e) => doExpr(e, d, an) | ||
1004 : | monnier | 429 | |
1005 : | (* Defaults *) | ||
1006 : | monnier | 409 | | e => doExpr(Gen.compile e,d,an) |
1007 : | |||
1008 : | (* Hmmm... this is the funky thing described in the comments | ||
1009 : | * in at the top of the file. This should be made parametrizable | ||
1010 : | * for other backends. | ||
1011 : | *) | ||
1012 : | and farith(opcode,a,b,d,an) = | ||
1013 : | let val fa = fexpr a | ||
1014 : | val fb = fexpr b | ||
1015 : | in emit(I.DEFFREG d); | ||
1016 : | mark(I.FOPERATEV{oper=opcode,fa=fa,fb=fb,fc=d},an); | ||
1017 : | emit(I.TRAPB) | ||
1018 : | end | ||
1019 : | |||
1020 : | monnier | 429 | and funary(opcode,e,d,an) = mark(I.FUNARY{oper=opcode,fb=fexpr e,fc=d},an) |
1021 : | |||
1022 : | |||
1023 : | monnier | 409 | (* generate an floating point expression |
1024 : | * return the register that holds the result | ||
1025 : | *) | ||
1026 : | and fexpr(T.FREG(_,r)) = r | ||
1027 : | | fexpr e = let val d = newFreg() in doFexpr(e,d,[]); d end | ||
1028 : | |||
1029 : | (* generate an external floating point operation *) | ||
1030 : | monnier | 429 | and fcvti2f(pseudo,e,fd,an) = |
1031 : | monnier | 409 | let val opnd = opn e |
1032 : | monnier | 429 | in app emit (pseudo({opnd=opnd, fd=fd}, reduceOpn)) |
1033 : | monnier | 409 | end |
1034 : | |||
1035 : | (* generate a floating point store *) | ||
1036 : | and fstore(stOp,ea,data,mem,an) = | ||
1037 : | let val (base,disp) = addr ea | ||
1038 : | in mark(I.FSTORE{stOp=stOp,r=fexpr data,b=base,d=disp,mem=mem},an) | ||
1039 : | end | ||
1040 : | |||
1041 : | (* generate a floating point expression that targets register d *) | ||
1042 : | and doFexpr(e,d,an) = | ||
1043 : | case e of | ||
1044 : | T.FREG(_,f) => fmove(f,d,an) | ||
1045 : | |||
1046 : | (* single precision support *) | ||
1047 : | | T.FADD(32,a,b) => farith(ADDS,a,b,d,an) | ||
1048 : | | T.FSUB(32,a,b) => farith(SUBS,a,b,d,an) | ||
1049 : | | T.FMUL(32,a,b) => farith(MULS,a,b,d,an) | ||
1050 : | | T.FDIV(32,a,b) => farith(DIVS,a,b,d,an) | ||
1051 : | |||
1052 : | (* double precision support *) | ||
1053 : | | T.FADD(64,a,b) => farith(ADDT,a,b,d,an) | ||
1054 : | | T.FSUB(64,a,b) => farith(SUBT,a,b,d,an) | ||
1055 : | | T.FMUL(64,a,b) => farith(MULT,a,b,d,an) | ||
1056 : | | T.FDIV(64,a,b) => farith(DIVT,a,b,d,an) | ||
1057 : | |||
1058 : | monnier | 429 | |
1059 : | monnier | 409 | (* generic *) |
1060 : | | T.FABS(_,a) => | ||
1061 : | mark(I.FOPERATE{oper=I.CPYS,fa=zeroFR,fb=fexpr a,fc=d},an) | ||
1062 : | | T.FNEG(_,a) => | ||
1063 : | let val fs = fexpr a | ||
1064 : | in mark(I.FOPERATE{oper=I.CPYSN,fa=fs,fb=fs,fc=d},an) end | ||
1065 : | | T.FSQRT(_,a) => error "fsqrt" | ||
1066 : | |||
1067 : | (* loads *) | ||
1068 : | | T.FLOAD(32,ea,mem) => fload(I.LDS,ea,d,mem,an) | ||
1069 : | | T.FLOAD(64,ea,mem) => fload(I.LDT,ea,d,mem,an) | ||
1070 : | monnier | 429 | |
1071 : | (* floating/floating conversion | ||
1072 : | * Note: it is not necessary to convert single precision | ||
1073 : | * to double on the alpha. | ||
1074 : | *) | ||
1075 : | monnier | 475 | | T.CVTF2F(fty,_,fty',e) => (* ignore rounding mode for now *) |
1076 : | (case (fty,fty') of | ||
1077 : | monnier | 429 | (64,64) => doFexpr(e,d,an) |
1078 : | | (64,32) => doFexpr(e,d,an) | ||
1079 : | | (32,32) => doFexpr(e,d,an) | ||
1080 : | | (32,64) => funary(I.CVTTS,e,d,an) (* use normal rounding *) | ||
1081 : | | _ => error "CVTF2F" | ||
1082 : | ) | ||
1083 : | monnier | 409 | |
1084 : | monnier | 429 | (* integer -> floating point conversion *) |
1085 : | monnier | 475 | | T.CVTI2F(fty,T.SIGN_EXTEND,ty,e) => |
1086 : | monnier | 429 | let val pseudo = |
1087 : | monnier | 475 | case (ty,fty) of |
1088 : | monnier | 429 | (ty,32) => if ty <= 32 then P.cvtls else P.cvtqs |
1089 : | | (ty,64) => if ty <= 32 then P.cvtlt else P.cvtqt | ||
1090 : | | _ => error "CVTI2F" | ||
1091 : | in fcvti2f(pseudo,e,d,an) end | ||
1092 : | |||
1093 : | monnier | 409 | (* misc *) |
1094 : | | T.FSEQ(s,e) => (doStmt s; doFexpr(e,d,an)) | ||
1095 : | | T.FMARK(e,a) => doFexpr(e,d,a::an) | ||
1096 : | |||
1097 : | | _ => error "doFexpr" | ||
1098 : | |||
1099 : | (* check whether an expression is andb(e,1) *) | ||
1100 : | and isAndb1(T.ANDB(_,e,T.LI 1)) = (true,e) | ||
1101 : | | isAndb1(T.ANDB(_,e,T.LI32 0w1)) = (true,e) | ||
1102 : | | isAndb1(T.ANDB(_,T.LI 1,e)) = (true,e) | ||
1103 : | | isAndb1(T.ANDB(_,T.LI32 0w1,e)) = (true,e) | ||
1104 : | | isAndb1 e = (false,e) | ||
1105 : | |||
1106 : | and zeroOrOne(T.LI 0) = ZERO | ||
1107 : | | zeroOrOne(T.LI32 0w0) = ZERO | ||
1108 : | | zeroOrOne(T.LI 1) = ONE | ||
1109 : | | zeroOrOne(T.LI32 0w1) = ONE | ||
1110 : | | zeroOrOne _ = OTHER | ||
1111 : | |||
1112 : | (* compile a branch *) | ||
1113 : | and branch(c,e,lab,an) = | ||
1114 : | case e of | ||
1115 : | T.CMP(ty,cc,e1 as T.LI _,e2) => | ||
1116 : | monnier | 475 | branchBS(ty,T.Util.swapCond cc,e2,e1,lab,an) |
1117 : | monnier | 409 | | T.CMP(ty,cc,e1 as T.LI32 _,e2) => |
1118 : | monnier | 475 | branchBS(ty,T.Util.swapCond cc,e2,e1,lab,an) |
1119 : | monnier | 409 | | T.CMP(ty,cc,e1,e2) => branchBS(ty,cc,e1,e2,lab,an) |
1120 : | | e => mark(I.BRANCH(I.BNE,ccExpr e,lab),an) | ||
1121 : | |||
1122 : | and br(opcode,exp,lab,an) = mark(I.BRANCH(opcode,expr exp,lab),an) | ||
1123 : | |||
1124 : | (* Use the branch on bit set/clear instruction when possible *) | ||
1125 : | and branchBS(ty,cc,a,b,lab,an) = | ||
1126 : | (case (cc,isAndb1 a,zeroOrOne b) of | ||
1127 : | (T.EQ,(true,e),ONE) => br(I.BLBS,e,lab,an) | ||
1128 : | | (T.EQ,(true,e),ZERO) => br(I.BLBC,e,lab,an) | ||
1129 : | | (T.NE,(true,e),ZERO) => br(I.BLBS,e,lab,an) | ||
1130 : | | (T.NE,(true,e),ONE) => br(I.BLBC,e,lab,an) | ||
1131 : | | (cc,_,_) => branchIt(ty,cc,a,b,lab,an) | ||
1132 : | ) | ||
1133 : | |||
1134 : | (* generate a branch instruction. | ||
1135 : | * Check for branch on zero as a special case | ||
1136 : | *) | ||
1137 : | and branchIt(ty,cc,e,T.LI 0,lab,an) = branchIt0(cc,e,lab,an) | ||
1138 : | | branchIt(ty,cc,e,T.LI32 0w0,lab,an) = branchIt0(cc,e,lab,an) | ||
1139 : | | branchIt(ty,cc,e1,e2,lab,an) = branchItOther(ty,cc,e1,e2,lab,an) | ||
1140 : | |||
1141 : | (* generate a branch instruction. | ||
1142 : | * This function optimizes the special case of comparison with zero. | ||
1143 : | *) | ||
1144 : | and branchIt0(T.EQ,e,lab,an) = br(I.BEQ,e,lab,an) | ||
1145 : | | branchIt0(T.NE,e,lab,an) = br(I.BNE,e,lab,an) | ||
1146 : | | branchIt0(T.GT,e,lab,an) = br(I.BGT,e,lab,an) | ||
1147 : | | branchIt0(T.GE,e,lab,an) = br(I.BGE,e,lab,an) | ||
1148 : | | branchIt0(T.LE,e,lab,an) = br(I.BLE,e,lab,an) | ||
1149 : | | branchIt0(T.LT,e,lab,an) = br(I.BLT,e,lab,an) | ||
1150 : | | branchIt0(T.GTU,e,lab,an) = br(I.BNE,e,lab,an) (* always > 0! *) | ||
1151 : | | branchIt0(T.GEU,e,lab,an) = (* always true! *) goto(lab,an) | ||
1152 : | | branchIt0(T.LTU,e,lab,an) = (* always false! *) () | ||
1153 : | | branchIt0(T.LEU,e,lab,an) = br(I.BEQ,e,lab,an) (* never < 0! *) | ||
1154 : | |||
1155 : | (* Generate the operands for unsigned comparisons | ||
1156 : | * Mask out high order bits whenever necessary. | ||
1157 : | *) | ||
1158 : | and unsignedCmpOpnds(ty,e1,e2) = | ||
1159 : | let fun zapHi(r,mask) = | ||
1160 : | let val d = newReg() | ||
1161 : | in emit(I.OPERATE{oper=I.ZAP, ra=r, rb=I.IMMop mask,rc=d}); | ||
1162 : | I.REGop d | ||
1163 : | end | ||
1164 : | |||
1165 : | fun zap(opn as I.REGop r) = | ||
1166 : | (case ty of | ||
1167 : | 8 => zapHi(r,0xfd) | ||
1168 : | | 16 => zapHi(r,0xfc) | ||
1169 : | | 32 => zapHi(r,0xf0) | ||
1170 : | | 64 => opn | ||
1171 : | | _ => error "unsignedCmpOpnds" | ||
1172 : | ) | ||
1173 : | | zap opn = opn | ||
1174 : | val opn1 = opn e1 | ||
1175 : | val opn2 = opn e2 | ||
1176 : | in (zap opn1,zap opn2) end | ||
1177 : | |||
1178 : | (* Generate a branch *) | ||
1179 : | and branchItOther(ty,cond,e1,e2,lab,an) = | ||
1180 : | let val tmpR = newReg() | ||
1181 : | fun signedCmp(cmp,br) = | ||
1182 : | (emit(I.OPERATE{oper=cmp, ra=expr e1, rb=opn e2, rc=tmpR}); | ||
1183 : | mark(I.BRANCH(br, tmpR, lab),an) | ||
1184 : | ) | ||
1185 : | fun unsignedCmp(ty,cmp,br) = | ||
1186 : | let val (x,y) = unsignedCmpOpnds(ty,e1,e2) | ||
1187 : | in emit(I.OPERATE{oper=cmp,ra=reduceOpn x,rb=y,rc=tmpR}); | ||
1188 : | mark(I.BRANCH(br, tmpR, lab),an) | ||
1189 : | end | ||
1190 : | in case cond of | ||
1191 : | T.LT => signedCmp(I.CMPLT,I.BNE) | ||
1192 : | | T.LE => signedCmp(I.CMPLE,I.BNE) | ||
1193 : | | T.GT => signedCmp(I.CMPLE,I.BEQ) | ||
1194 : | | T.GE => signedCmp(I.CMPLT,I.BEQ) | ||
1195 : | | T.EQ => signedCmp(I.CMPEQ,I.BNE) | ||
1196 : | | T.NE => signedCmp(I.CMPEQ,I.BEQ) | ||
1197 : | | T.LTU => unsignedCmp(ty,I.CMPULT,I.BNE) | ||
1198 : | | T.LEU => unsignedCmp(ty,I.CMPULE,I.BNE) | ||
1199 : | | T.GTU => unsignedCmp(ty,I.CMPULE,I.BEQ) | ||
1200 : | | T.GEU => unsignedCmp(ty,I.CMPULT,I.BEQ) | ||
1201 : | end | ||
1202 : | |||
1203 : | (* This function generates a conditional move: | ||
1204 : | * d = if cond(a,b) then x else y | ||
1205 : | * Apparently, only signed comparisons conditional moves | ||
1206 : | * are supported on the alpha. | ||
1207 : | *) | ||
1208 : | and cmove(ty,cond,a,b,x,y,d,an) = | ||
1209 : | let val _ = doExpr(y,d,[]) (* evaluate false case *) | ||
1210 : | |||
1211 : | val (cond,a,b) = | ||
1212 : | (* move the immed operand to b *) | ||
1213 : | case a of | ||
1214 : | (T.LI _ | T.LI32 _ | T.CONST _) => | ||
1215 : | monnier | 475 | (T.Util.swapCond cond,b,a) |
1216 : | monnier | 409 | | _ => (cond,a,b) |
1217 : | |||
1218 : | fun sub(a,(T.LI 0 | T.LI32 0w0)) = expr a | ||
1219 : | | sub(a,b) = expr(T.SUB(ty,a,b)) | ||
1220 : | |||
1221 : | fun cmp(cond,e1,e2) = | ||
1222 : | let val d = newReg() | ||
1223 : | in compare(ty,cond,e1,e2,d,[]); d end | ||
1224 : | |||
1225 : | val (oper,ra,x,y) = | ||
1226 : | case (cond,isAndb1 a,zeroOrOne b) of | ||
1227 : | (* low bit set/clear? *) | ||
1228 : | (T.EQ,(true,e),ONE) => (I.CMOVLBS,expr e,x,y) | ||
1229 : | | (T.EQ,(true,e),ZERO) => (I.CMOVLBC,expr e,x,y) | ||
1230 : | | (T.NE,(true,e),ZERO) => (I.CMOVLBS,expr e,x,y) | ||
1231 : | | (T.NE,(true,e),ONE) => (I.CMOVLBC,expr e,x,y) | ||
1232 : | (* signed *) | ||
1233 : | | (T.EQ,_,_) => (I.CMOVEQ,sub(a,b),x,y) | ||
1234 : | | (T.NE,_,_) => (I.CMOVEQ,cmp(T.EQ,a,b),y,x) | ||
1235 : | | (T.GT,_,_) => (I.CMOVGT,sub(a,b),x,y) | ||
1236 : | | (T.GE,_,_) => (I.CMOVGE,sub(a,b),x,y) | ||
1237 : | | (T.LT,_,_) => (I.CMOVLT,sub(a,b),x,y) | ||
1238 : | | (T.LE,_,_) => (I.CMOVLE,sub(a,b),x,y) | ||
1239 : | |||
1240 : | (* unsigned: do compare then use the condition code *) | ||
1241 : | | (T.LTU,_,_) => (I.CMOVEQ,cmp(T.GEU,a,b),x,y) | ||
1242 : | | (T.LEU,_,_) => (I.CMOVEQ,cmp(T.GTU,a,b),x,y) | ||
1243 : | | (T.GTU,_,_) => (I.CMOVEQ,cmp(T.LEU,a,b),x,y) | ||
1244 : | | (T.GEU,_,_) => (I.CMOVEQ,cmp(T.LTU,a,b),x,y) | ||
1245 : | in mark(I.CMOVE{oper=oper,ra=ra,rb=opn x,rc=d},an) (* true case *) | ||
1246 : | end | ||
1247 : | |||
1248 : | |||
1249 : | (* This function generates a comparion between e1 and e2 and writes | ||
1250 : | * the result to register d. | ||
1251 : | * It'll mask out the high order 32-bits when performing | ||
1252 : | * unsigned 32-bit integer comparisons. | ||
1253 : | *) | ||
1254 : | and compare(ty,cond,e1,e2,d,an) = | ||
1255 : | let fun signedCmp(oper,a,b,d) = | ||
1256 : | mark(I.OPERATE{oper=oper,ra=expr a,rb=opn b,rc=d},an) | ||
1257 : | fun unsignedCmp(ty,oper,a,b,d) = | ||
1258 : | let val (x,y) = unsignedCmpOpnds(ty,a,b) | ||
1259 : | in mark(I.OPERATE{oper=oper,ra=reduceOpn x,rb=y,rc=d},an) | ||
1260 : | end | ||
1261 : | fun eq(a,b,d) = | ||
1262 : | (case (opn a,opn b) of | ||
1263 : | (a,I.REGop r) => | ||
1264 : | mark(I.OPERATE{oper=I.CMPEQ,ra=r,rb=a,rc=d},an) | ||
1265 : | | (a,b) => | ||
1266 : | mark(I.OPERATE{oper=I.CMPEQ,ra=reduceOpn a,rb=b,rc=d},an) | ||
1267 : | ) | ||
1268 : | fun neq(a,b,d) = | ||
1269 : | let val tmp = newReg() | ||
1270 : | in eq(a,b,tmp); | ||
1271 : | emit(I.OPERATE{oper=I.CMPEQ,ra=tmp,rb=zeroOpn,rc=d}) | ||
1272 : | end | ||
1273 : | val (cond,e1,e2) = | ||
1274 : | case e1 of | ||
1275 : | (T.LI _ | T.LI32 _ | T.CONST _) => | ||
1276 : | monnier | 475 | (T.Util.swapCond cond,e2,e1) |
1277 : | monnier | 409 | | _ => (cond,e1,e2) |
1278 : | in case cond of | ||
1279 : | T.EQ => eq(e1,e2,d) | ||
1280 : | | T.NE => neq(e1,e2,d) | ||
1281 : | | T.GT => signedCmp(I.CMPLT,e2,e1,d) | ||
1282 : | | T.GE => signedCmp(I.CMPLE,e2,e1,d) | ||
1283 : | | T.LT => signedCmp(I.CMPLT,e1,e2,d) | ||
1284 : | | T.LE => signedCmp(I.CMPLE,e1,e2,d) | ||
1285 : | | T.GTU => unsignedCmp(ty,I.CMPULT,e2,e1,d) | ||
1286 : | | T.GEU => unsignedCmp(ty,I.CMPULE,e2,e1,d) | ||
1287 : | | T.LTU => unsignedCmp(ty,I.CMPULT,e1,e2,d) | ||
1288 : | | T.LEU => unsignedCmp(ty,I.CMPULE,e1,e2,d) | ||
1289 : | end | ||
1290 : | |||
1291 : | (* generate an unconditional branch *) | ||
1292 : | and goto(lab,an) = mark(I.BRANCH(I.BR,zeroR,lab),an) | ||
1293 : | |||
1294 : | (* generate an call instruction *) | ||
1295 : | and call(ea,def,use,mem,an) = | ||
1296 : | let val pv = expr ea | ||
1297 : | val returnPtrR = 26 | ||
1298 : | fun live([],acc) = acc | ||
1299 : | | live(T.GPR(T.REG(_,r))::regs,acc) = live(regs, C.addReg(r,acc)) | ||
1300 : | | live(T.CCR(T.CC cc)::regs,acc) = live(regs, C.addReg(cc,acc)) | ||
1301 : | | live(T.FPR(T.FREG(_,f))::regs,acc) = live(regs, C.addFreg(f,acc)) | ||
1302 : | | live(_::regs, acc) = live(regs, acc) | ||
1303 : | in mark(I.JSR({r=returnPtrR, b=pv, d=0}, | ||
1304 : | live(def, C.addReg(returnPtrR, C.empty)), | ||
1305 : | live(use, C.addReg(pv, C.empty)),mem),an) | ||
1306 : | end | ||
1307 : | |||
1308 : | (* generate an floating point branch *) | ||
1309 : | and fbranch(_,T.FCMP(fty,cc,e1,e2),lab,an) = | ||
1310 : | let val f1 = fexpr e1 | ||
1311 : | val f2 = fexpr e2 | ||
1312 : | fun bcc(cmp,br) = | ||
1313 : | let val tmpR = C.newFreg() | ||
1314 : | in emit(I.DEFFREG(tmpR)); | ||
1315 : | emit(I.FOPERATE{oper=cmp,fa=f1,fb=f2,fc=tmpR}); | ||
1316 : | emit(I.TRAPB); | ||
1317 : | mark(I.FBRANCH(br,tmpR,lab),an) | ||
1318 : | end | ||
1319 : | fun fall(cmp1, br1, cmp2, br2) = | ||
1320 : | let val tmpR1 = newFreg() | ||
1321 : | val tmpR2 = newFreg() | ||
1322 : | val fallLab = Label.newLabel "" | ||
1323 : | in emit(I.DEFFREG(tmpR1)); | ||
1324 : | emit(I.FOPERATE{oper=cmp1, fa=f1, fb=f2, fc=tmpR1}); | ||
1325 : | emit(I.TRAPB); | ||
1326 : | mark(I.FBRANCH(br1, tmpR1, fallLab),an); | ||
1327 : | emit(I.DEFFREG(tmpR2)); | ||
1328 : | emit(I.FOPERATE{oper=cmp2, fa=f1, fb=f2, fc=tmpR2}); | ||
1329 : | emit(I.TRAPB); | ||
1330 : | mark(I.FBRANCH(br2, tmpR2, lab),an); | ||
1331 : | defineLabel fallLab | ||
1332 : | end | ||
1333 : | fun bcc2(cmp1, br1, cmp2, br2) = (bcc(cmp1, br1); bcc(cmp2, br2)) | ||
1334 : | in case cc of | ||
1335 : | T.== => bcc(I.CMPTEQSU, I.FBNE) | ||
1336 : | | T.?<> => bcc(I.CMPTEQSU, I.FBEQ) | ||
1337 : | | T.? => bcc(I.CMPTUNSU, I.FBNE) | ||
1338 : | | T.<=> => bcc(I.CMPTUNSU, I.FBEQ) | ||
1339 : | | T.> => fall(I.CMPTLESU, I.FBNE, I.CMPTUNSU, I.FBEQ) | ||
1340 : | | T.>= => fall(I.CMPTLTSU, I.FBNE, I.CMPTUNSU, I.FBEQ) | ||
1341 : | | T.?> => bcc(I.CMPTLESU, I.FBEQ) | ||
1342 : | | T.?>= => bcc(I.CMPTLTSU, I.FBEQ) | ||
1343 : | | T.< => bcc(I.CMPTLTSU, I.FBNE) | ||
1344 : | | T.<= => bcc(I.CMPTLESU, I.FBNE) | ||
1345 : | | T.?< => bcc2(I.CMPTLTSU, I.FBNE, I.CMPTUNSU, I.FBNE) | ||
1346 : | | T.?<= => bcc2(I.CMPTLESU, I.FBNE, I.CMPTUNSU, I.FBNE) | ||
1347 : | | T.<> => fall(I.CMPTEQSU, I.FBNE, I.CMPTUNSU, I.FBEQ) | ||
1348 : | | T.?= => bcc2(I.CMPTEQSU, I.FBNE, I.CMPTUNSU, I.FBNE) | ||
1349 : | end | ||
1350 : | | fbranch _ = error "fbranch" | ||
1351 : | |||
1352 : | (* generate an floating point branch *) | ||
1353 : | and doCCexpr(T.CC r,d,an) = move(r,d,an) | ||
1354 : | | doCCexpr(T.CMP(ty,cond,e1,e2),d,an) = compare(ty,cond,e1,e2,d,an) | ||
1355 : | | doCCexpr(T.FCMP(fty,cond,e1,e2),d,an) = error "doCCexpr" | ||
1356 : | | doCCexpr(T.CCMARK(e,a),d,an) = doCCexpr(e,d,a::an) | ||
1357 : | |||
1358 : | and ccExpr(T.CC r) = r | ||
1359 : | | ccExpr e = let val d = newReg() | ||
1360 : | in doCCexpr(e,d,[]); d end | ||
1361 : | |||
1362 : | (* compile a statement *) | ||
1363 : | and stmt(s,an) = | ||
1364 : | case s of | ||
1365 : | T.MV(ty,r,e) => doExpr(e,r,an) | ||
1366 : | | T.FMV(ty,r,e) => doFexpr(e,r,an) | ||
1367 : | | T.CCMV(r,e) => doCCexpr(e,r,an) | ||
1368 : | | T.COPY(ty,dst,src) => copy(dst,src,an) | ||
1369 : | | T.FCOPY(ty,dst,src) => fcopy(dst,src,an) | ||
1370 : | | T.JMP(T.LABEL(LE.LABEL lab),_) => goto(lab,an) | ||
1371 : | | T.JMP(e,labs) => mark(I.JMPL({r=zeroR,b=expr e,d=0},labs),an) | ||
1372 : | | T.BCC(cond,e,lab) => branch(cond,e,lab,an) | ||
1373 : | | T.FBCC(cond,e,lab) => fbranch(cond,e,lab,an) | ||
1374 : | | T.CALL(e,def,use,mem) => call(e,def,use,mem,an) | ||
1375 : | | T.RET => mark(I.RET{r=zeroR,b=26,d=0},an) | ||
1376 : | | T.STORE(8,ea,data,mem) => store8(ea,data,mem,an) | ||
1377 : | | T.STORE(16,ea,data,mem) => store16(ea,data,mem,an) | ||
1378 : | | T.STORE(32,ea,data,mem) => store(I.STL,ea,data,mem,an) | ||
1379 : | | T.STORE(64,ea,data,mem) => store(I.STQ,ea,data,mem,an) | ||
1380 : | | T.FSTORE(32,ea,data,mem) => fstore(I.STS,ea,data,mem,an) | ||
1381 : | | T.FSTORE(64,ea,data,mem) => fstore(I.STT,ea,data,mem,an) | ||
1382 : | | T.ANNOTATION(s,a) => stmt(s,a::an) | ||
1383 : | | _ => error "stmt" | ||
1384 : | |||
1385 : | and doStmt s = stmt(s,[]) | ||
1386 : | |||
1387 : | monnier | 429 | (* condition code registers are mapped onto general registers *) |
1388 : | fun cc(T.CCR(T.CC cc)) = T.GPR(T.REG(32,cc)) | ||
1389 : | | cc r = r | ||
1390 : | monnier | 409 | |
1391 : | monnier | 429 | in S.STREAM |
1392 : | { beginCluster= beginCluster, | ||
1393 : | endCluster = endCluster, | ||
1394 : | emit = doStmt, | ||
1395 : | pseudoOp = pseudoOp, | ||
1396 : | defineLabel = defineLabel, | ||
1397 : | entryLabel = entryLabel, | ||
1398 : | comment = comment, | ||
1399 : | annotation = annotation, | ||
1400 : | exitBlock = fn regs => exitBlock(map cc regs), | ||
1401 : | alias = alias, | ||
1402 : | phi = phi | ||
1403 : | monnier | 409 | } |
1404 : | end | ||
1405 : | |||
1406 : | end | ||
1407 : |
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |