Home My Page Projects Code Snippets Project Openings SML/NJ
Summary Activity Forums Tracker Lists Tasks Docs Surveys News SCM Files

SCM Repository

[smlnj] Diff of /sml/branches/primop-branch-2/src/compiler/FLINT/trans/translate.sml
ViewVC logotype

Diff of /sml/branches/primop-branch-2/src/compiler/FLINT/trans/translate.sml

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

sml/trunk/src/compiler/FLINT/trans/translate.sml revision 1183, Fri Mar 29 19:09:48 2002 UTC sml/branches/primop-branch-2/src/compiler/FLINT/trans/translate.sml revision 1981, Tue Jul 18 02:03:32 2006 UTC
# Line 24  Line 24 
24        structure DA = Access        structure DA = Access
25        structure DI = DebIndex        structure DI = DebIndex
26        structure EM = ErrorMsg        structure EM = ErrorMsg
       structure II = InlInfo  
27        structure LT = PLambdaType        structure LT = PLambdaType
28        structure M  = Modules        structure M  = Modules
29        structure MC = MatchComp        structure MC = MatchComp
# Line 37  Line 36 
36        structure TP = Types        structure TP = Types
37        structure TU = TypesUtil        structure TU = TypesUtil
38        structure V  = VarCon        structure V  = VarCon
39          structure EU = ElabUtil
40    
41        structure Map = PersMap        structure IIMap = RedBlackMapFn (type ord_key = IntInf.int
42                                            val compare = IntInf.compare)
43    
44        open Absyn PLambda        open Absyn PLambda
45  in  in
# Line 248  Line 249 
249    end (* end of mergePidInfo *)    end (* end of mergePidInfo *)
250    
251  (** a map that stores information about external references *)  (** a map that stores information about external references *)
252  val persmap = ref (Map.empty : pidInfo Map.map)  val persmap = ref (PersMap.empty : pidInfo PersMap.map)
253    
254  fun mkPid (pid, t, l, nameOp) =  fun mkPid (pid, t, l, nameOp) =
255      case Map.find (!persmap, pid)      case PersMap.find (!persmap, pid)
256        of NONE =>        of NONE =>
257            let val (pinfo, var) = mkPidInfo (t, l, nameOp)            let val (pinfo, var) = mkPidInfo (t, l, nameOp)
258             in persmap := Map.insert(!persmap, pid, pinfo);             in persmap := PersMap.insert(!persmap, pid, pinfo);
259                var                var
260            end            end
261         | SOME pinfo =>         | SOME pinfo =>
262            let val (npinfo, var) = mergePidInfo (pinfo, t, l, nameOp)            let val (npinfo, var) = mergePidInfo (pinfo, t, l, nameOp)
263                fun rmv (key, map) =                fun rmv (key, map) =
264                    let val (newMap, _) = Map.remove(map, key)                    let val (newMap, _) = PersMap.remove(map, key)
265                    in newMap                    in newMap
266                    end handle e => map                    end handle e => map
267             in persmap := Map.insert(rmv(pid, !persmap), pid, npinfo);             in persmap := PersMap.insert(rmv(pid, !persmap), pid, npinfo);
268                var                var
269            end            end
270    
271    val iimap = ref (IIMap.empty : lvar IIMap.map)
272    
273    fun getII n =
274        case IIMap.find (!iimap, n) of
275            SOME v => v
276          | NONE => let val v = mkv ()
277                    in
278                        iimap := IIMap.insert (!iimap, n, v);
279                        v
280                    end
281    
282  (** converting an access w. type into a lambda expression *)  (** converting an access w. type into a lambda expression *)
283  fun mkAccT (p, t, nameOp) =  fun mkAccT (p, t, nameOp) =
284    let fun h(DA.LVAR v, l) = bindvar(v, l, nameOp)    let fun h(DA.LVAR v, l) = bindvar(v, l, nameOp)
# Line 299  Line 311 
311           TP.DATACON { name, rep as DA.EXN _, typ, ... } =>           TP.DATACON { name, rep as DA.EXN _, typ, ... } =>
312           let val nt = toDconLty DI.top typ           let val nt = toDconLty DI.top typ
313               val nrep = mkRep(rep, nt, name)               val nrep = mkRep(rep, nt, name)
314                 val _ = print "coreExn in translate.sml: "
315                 val _ = PPLexp.printLexp (CON'((name, nrep, nt), [], unitLexp))
316                 val _ = print "\n"
317           in CON'((name, nrep, nt), [], unitLexp)           in CON'((name, nrep, nt), [], unitLexp)
318           end           end
319         | _ => bug "coreExn in translate")         | _ => bug "coreExn in translate")
# Line 332  Line 347 
347          | _ => rep          | _ => rep
348    end    end
349    
350  (** converting a value of access+info into the lambda expression *)  (** converting a value of access+prim into the lambda expression
351  fun mkAccInfo (acc, info, getLty, nameOp) =   ** [KM???} But it is ignoring the prim argument!!!
352     **)
353    fun mkAccInfo (acc, prim, getLty, nameOp) =
354    if extern acc then mkAccT(acc, getLty(), nameOp) else mkAcc (acc, nameOp)    if extern acc then mkAccT(acc, getLty(), nameOp) else mkAcc (acc, nameOp)
355    
356  fun fillPat(pat, d) =  fun fillPat(pat, d) =
# Line 350  Line 367 
367                               (typ := t; labels)                               (typ := t; labels)
368                    | find _ = (complain EM.COMPLAIN "unresolved flexible record"                    | find _ = (complain EM.COMPLAIN "unresolved flexible record"
369                                (fn ppstrm =>                                (fn ppstrm =>
370                                      (PP.add_newline ppstrm;                                      (PP.newline ppstrm;
371                                       PP.add_string ppstrm "pattern: ";                                       PP.string ppstrm "pattern: ";
372                                       PPAbsyn.ppPat env ppstrm                                       PPAbsyn.ppPat env ppstrm
373                                          (pat,!Control.Print.printDepth)));                                          (pat,!Control.Print.printDepth)));
374                                 raise DontBother)                                 raise DontBother)
# Line 385  Line 402 
402  val eqDict =  val eqDict =
403    let val strEqRef : lexp option ref = ref NONE    let val strEqRef : lexp option ref = ref NONE
404        val polyEqRef : lexp option ref = ref NONE        val polyEqRef : lexp option ref = ref NONE
405          val intInfEqRef : lexp option ref = ref NONE
406    
407        fun getStrEq () =        fun getStrEq () =
408          (case (!strEqRef)          (case (!strEqRef)
# Line 393  Line 411 
411                         in strEqRef := (SOME e); e                         in strEqRef := (SOME e); e
412                        end))                        end))
413    
414          fun getIntInfEq () =              (* same as polyeq, but silent *)
415              case !intInfEqRef of
416                  SOME e => e
417                | NONE => let val e =
418                                  TAPP (coreAcc "polyequal",
419                                        [toTyc DI.top BT.intinfTy])
420                          in
421                              intInfEqRef := SOME e; e
422                          end
423    
424        fun getPolyEq () =        fun getPolyEq () =
425          (repPolyEq();          (repPolyEq();
426           case (!polyEqRef)           case (!polyEqRef)
# Line 400  Line 428 
428             | NONE => (let val e = coreAcc "polyequal"             | NONE => (let val e = coreAcc "polyequal"
429                         in polyEqRef := (SOME e); e                         in polyEqRef := (SOME e); e
430                        end))                        end))
431     in {getStrEq=getStrEq, getPolyEq=getPolyEq}     in {getStrEq=getStrEq, getIntInfEq=getIntInfEq, getPolyEq=getPolyEq}
432    end    end
433    
434  val eqGen = PEqual.equal (eqDict, env)  val eqGen = PEqual.equal (eqDict, env)
# Line 418  Line 446 
446  val lt_int = LT.ltc_int  val lt_int = LT.ltc_int
447  val lt_int32 = LT.ltc_int32  val lt_int32 = LT.ltc_int32
448  val lt_bool = LT.ltc_bool  val lt_bool = LT.ltc_bool
449    val lt_unit = LT.ltc_unit
450    
451  val lt_ipair = lt_tup [lt_int, lt_int]  val lt_ipair = lt_tup [lt_int, lt_int]
452    val lt_i32pair = lt_tup [lt_int32, lt_int32]
453  val lt_icmp = lt_arw (lt_ipair, lt_bool)  val lt_icmp = lt_arw (lt_ipair, lt_bool)
454  val lt_ineg = lt_arw (lt_int, lt_int)  val lt_ineg = lt_arw (lt_int, lt_int)
455  val lt_intop = lt_arw (lt_ipair, lt_int)  val lt_intop = lt_arw (lt_ipair, lt_int)
456    val lt_u_u = lt_arw (lt_unit, lt_unit)
457    
458  val boolsign = BT.boolsign  val boolsign = BT.boolsign
459  val (trueDcon', falseDcon') =  val (trueDcon', falseDcon') =
# Line 477  Line 508 
508    end    end
509    
510  fun inlineShift(shiftOp, kind, clear) =  fun inlineShift(shiftOp, kind, clear) =
511    let fun shiftLimit (PO.UINT lim) = WORD(Word.fromInt lim)    let fun shiftLimit (PO.UINT lim | PO.INT lim) = WORD(Word.fromInt lim)
512          | shiftLimit _ = bug "unexpected case in shiftLimit"          | shiftLimit _ = bug "unexpected case in shiftLimit"
513    
514        val p = mkv() val vp = VAR p        val p = mkv() val vp = VAR p
# Line 530  Line 561 
561                  val fequal =                  val fequal =
562                      PRIM (PO.CMP { oper = PO.EQL, kind = nk }, lt_cmp, [])                      PRIM (PO.CMP { oper = PO.EQL, kind = nk }, lt_cmp, [])
563              in              in
564                  COND (APP (fequal, RECORD [VAR y, VAR y]), VAR x, VAR y)                  COND (APP (fequal, RECORD [VAR y, VAR y]), VAR y, VAR x)
565              end              end
566            | _ => VAR y            | _ => VAR y
567  in  in
# Line 550  Line 581 
581                VAR x, APP (negate, VAR x)))                VAR x, APP (negate, VAR x)))
582  end  end
583    
584    fun inl_infPrec (what, corename, p, lt, is_from_inf) = let
585        val (orig_arg_lt, res_lt) =
586            case LT.ltd_arrow lt of
587                (_, [a], [r]) => (a, r)
588              | _ => bug ("unexpected type of " ^ what)
589        val extra_arg_lt =
590            LT.ltc_parrow (if is_from_inf then (orig_arg_lt, LT.ltc_int32)
591                           else (LT.ltc_int32, orig_arg_lt))
592        val new_arg_lt = LT.ltc_tuple [orig_arg_lt, extra_arg_lt]
593        val new_lt = LT.ltc_parrow (new_arg_lt, res_lt)
594        val x = mkv ()
595    in
596        FN (x, orig_arg_lt,
597            APP (PRIM (p, new_lt, []),
598                 RECORD [VAR x, coreAcc corename]))
599    end
600    
601  fun transPrim (prim, lt, ts) =  fun transPrim (prim, lt, ts) =
602    let fun g (PO.INLLSHIFT k) = inlineShift(lshiftOp, k, fn _ => lword0(k))    let fun g (PO.INLLSHIFT k) = inlineShift(lshiftOp, k, fn _ => lword0(k))
603          | g (PO.INLRSHIFTL k) = inlineShift(rshiftlOp, k, fn _ => lword0(k))          | g (PO.INLRSHIFTL k) = inlineShift(rshiftlOp, k, fn _ => lword0(k))
# Line 597  Line 645 
645            in FN (mkv (), argt, unitLexp)            in FN (mkv (), argt, unitLexp)
646            end            end
647    
648            | g (PO.INLIDENTITY) =
649              let val argt =
650                      case ts of [a] => lt_tyc a
651                               | _ => bug "unexpected type for INLIDENTITY"
652                  val v = mkv ()
653              in
654                  FN (v, argt, VAR v)
655              end
656    
657            | g (PO.CVT64) = let val v = mkv () in FN (v, lt_i32pair, VAR v) end
658    
659          | g (PO.INLSUBSCRIPTV) =          | g (PO.INLSUBSCRIPTV) =
660                let val (tc1, t1) = case ts of [z] => (z, lt_tyc z)                let val (tc1, t1) = case ts of [z] => (z, lt_tyc z)
661                                      | _ => bug "unexpected ty for INLSUBV"                                      | _ => bug "unexpected ty for INLSUBV"
# Line 716  Line 775 
775                end                end
776  ****)  ****)
777    
778            (* Precision-conversion operations involving IntInf.
779             * These need to be translated specially by providing
780             * a second argument -- the routine from _Core that
781             * does the actual conversion to or from IntInf. *)
782    
783            | g (p as PO.TEST_INF prec) =
784                inl_infPrec ("TEST_INF", "testInf", p, lt, true)
785            | g (p as PO.TRUNC_INF prec) =
786                inl_infPrec ("TRUNC_INF", "truncInf", p, lt, true)
787            | g (p as PO.EXTEND_INF prec) =
788                inl_infPrec ("EXTEND_INF", "finToInf", p, lt, false)
789            | g (p as PO.COPY_INF prec) =
790                inl_infPrec ("COPY", "finToInf", p, lt, false)
791    
792            (* default handling for all other primops *)
793          | g p = PRIM(p, lt, ts)          | g p = PRIM(p, lt, ts)
794    
795     in g prim     in g prim
796    end (* function transPrim *)    end (* function transPrim *)
797    
798    fun genintinfswitch (sv, cases, default) = let
799        val v = mkv ()
800    
801        (* build a chain of equality tests for checking large pattern values *)
802        fun build [] = default
803          | build ((n, e) :: r) =
804              COND (APP (#getIntInfEq eqDict (), RECORD [VAR v, VAR (getII n)]),
805                    e, build r)
806    
807        (* split pattern values into small values and large values;
808         * small values can be handled directly using SWITCH *)
809        fun split ([], s, l) = (rev s, rev l)
810          | split ((n, e) :: r, sm, lg) =
811              (case LN.lowVal n of
812                   SOME l => split (r, (INTcon l, e) :: sm, lg)
813                 | NONE => split (r, sm, (n, e) :: lg))
814    
815        fun gen () =
816            case split (cases, [], []) of
817                ([], largeints) => build largeints
818              | (smallints, largeints) => let
819                    val iv = mkv ()
820                in
821                    LET (iv, APP (coreAcc "infLowValue", VAR v),
822                         SWITCH (VAR iv,
823                                 DA.CNIL, smallints, SOME (build largeints)))
824                end
825    in
826        LET (v, sv, gen ())
827    end
828    
829    
830  (***************************************************************************  (***************************************************************************
831   *                                                                         *   *                                                                         *
832   * Translating various bindings into lambda expressions:                   *   * Translating various bindings into lambda expressions:                   *
# Line 733  Line 839 
839   *   val mkBnd : DI.depth -> B.binding -> L.lexp                           *   *   val mkBnd : DI.depth -> B.binding -> L.lexp                           *
840   *                                                                         *   *                                                                         *
841   ***************************************************************************)   ***************************************************************************)
842  fun mkVar (v as V.VALvar{access, info, typ, path}, d) =  (* [KM???] mkVar is calling mkAccInfo, which just drops the prim!!! *)
843        mkAccInfo(access, info, fn () => toLty d (!typ), getNameOp path)  fun mkVar (v as V.VALvar{access, prim, typ, path}, d) =
844          mkAccInfo(access, prim, fn () => toLty d (!typ), getNameOp path)
845    | mkVar _ = bug "unexpected vars in mkVar"    | mkVar _ = bug "unexpected vars in mkVar"
846    
847  fun mkVE (v, ts, d) = let  (* mkVE : V.var * type list * depth -> lexp
848      fun otherwise () =   * This translates a variable, which might be bound to a primop.
849          case ts of   * In the case of a primop variable, this function reconstructs the
850              [] => mkVar (v, d)   * type parameters of instantiation of the intrinsic primop type relative
851            | _ => TAPP(mkVar(v, d), map (toTyc d) ts)   * to the variable occurrence type *)
852  in  fun mkVE (e as V.VALvar { typ, prim = PrimOpId.Prim p, ... }, ts, d) =
853      case v of        let val occty = (* compute the occurrence type of the variable *)
854          V.VALvar { info, ... } =>                case ts
855          II.match info                  of [] => !typ
856             { inl_prim = fn (p, typ) =>                   | _ => TU.applyPoly(!typ, ts)
857               (case (p, ts) of            val (primop,intrinsicType) =
858                    (PO.POLYEQL, [t]) => eqGen(typ, t, toTcLt d)                case (PrimOpMap.primopMap p, PrimOpTypeMap.primopTypeMap p)
859                   of (SOME p, SOME t) => (p,t)
860                    | _ => bug "mkVE: unrecognized primop name"
861              val _ = print "mkVE: before matchInstTypes\n"
862              val intrinsicParams =
863                  (* compute intrinsic instantiation params of intrinsicType *)
864                  case ((TU.matchInstTypes(occty, intrinsicType)) : (TP.tyvar list * TP.tyvar list) option )
865                    of SOME(_, tvs) =>
866                       (print ("tvs length "^ (Int.toString (length tvs)) ^"\n");
867                        complain EM.WARN "mkVE ->matchInstTypes -> pruneTyvar " (fn ppstrm => PPVal.ppDebugVar (fn x => "") ppstrm env e);
868                        map TU.pruneTyvar tvs)
869                     | NONE => (complain EM.COMPLAIN "matchInstTypes"
870                                  (fn ppstrm =>
871                                        (PP.newline ppstrm;
872                                         PP.string ppstrm "VALvar: ";
873                                         PPVal.ppVar ppstrm e;
874                                         PP.newline ppstrm;
875                                         PP.string ppstrm "occtypes: ";
876                                         PPType.ppType env ppstrm occty;
877                                         PP.newline ppstrm;
878                                         PP.string ppstrm "intrinsicType: ";
879                                         PPType.ppType env ppstrm intrinsicType;
880                                         PP.newline ppstrm;
881                                         PP.string ppstrm "instpoly occ: ";
882                                         PPType.ppType env ppstrm (#1 (TU.instantiatePoly occty));
883                                         PP.newline ppstrm;
884                                         PP.string ppstrm "instpoly intrinsicType: ";
885                                         let val inst = (#1 (TU.instantiatePoly intrinsicType))
886                                         in PPType.ppType env ppstrm inst
887                                         end));
888                                bug "primop intrinsic type doesn't match occurrence type")
889              val _ = print "mkVE: after matchInstTypes\n"
890           in case (primop, intrinsicParams)
891                of (PO.POLYEQL, [t]) => eqGen(intrinsicType, t, toTcLt d)
892                  | (PO.POLYNEQ, [t]) =>                  | (PO.POLYNEQ, [t]) =>
893                    composeNOT(eqGen(typ, t, toTcLt d), toLty d t)                 composeNOT(eqGen(intrinsicType, t, toTcLt d), toLty d t)
894                  | (PO.INLMKARRAY, [t]) =>                  | (PO.INLMKARRAY, [t]) =>
895                    let val dict =                    let val dict =
896                            {default = coreAcc "mkNormArray",                            {default = coreAcc "mkNormArray",
897                             table = [([LT.tcc_real], coreAcc "mkRealArray")]}                             table = [([LT.tcc_real], coreAcc "mkRealArray")]}
898                    in GENOP (dict, p, toLty d typ, map (toTyc d) ts)                  in GENOP (dict, primop, toLty d intrinsicType,
899                             map (toTyc d) intrinsicParams)
900                    end                    end
901                  | (PO.RAW_CCALL NONE, [a, b, c]) =>                  | (PO.RAW_CCALL NONE, [a, b, c]) =>
902                    let val i = SOME (CProto.decode cproto_conv                    let val i = SOME (CProto.decode cproto_conv
903                                                    { fun_ty = a, encoding = b })                                                    { fun_ty = a, encoding = b })
904                                handle CProto.BadEncoding => NONE                                handle CProto.BadEncoding => NONE
905                    in PRIM (PO.RAW_CCALL i, toLty d typ, map (toTyc d) ts)                 in PRIM (PO.RAW_CCALL i, toLty d intrinsicType,
906                            map (toTyc d) intrinsicParams)
907                    end                    end
908                  | _ => transPrim(p, (toLty d typ), map (toTyc d) ts)),               | _ => transPrim(primop, (toLty d intrinsicType),
909               inl_str = fn _ => otherwise (),                                map (toTyc d) intrinsicParams)
              inl_no = fn () => otherwise () }  
       | _ => otherwise ()  
910  end  end
911      | mkVE (v as V.VALvar{typ, prim = PrimOpId.NonPrim, ... }, ts, d) =
912        (* non primop variable *)
913          (case ts
914             of [] => mkVar (v, d)
915              | _ => TAPP(mkVar(v, d), map (toTyc d) ts))
916                     (* dbm: when does this second case occur? *)
917      | mkVE _ = bug "non VALvar passed to mkVE"
918    
919    
920  fun mkCE (TP.DATACON{const, rep, name, typ, ...}, ts, apOp, d) =  fun mkCE (TP.DATACON{const, rep, name, typ, ...}, ts, apOp, d) =
921    let val lt = toDconLty d typ    let val lt = toDconLty d typ
922        val rep' = mkRep(rep, lt, name)        val rep' = mkRep(rep, lt, name)
923        val dc = (name, rep', lt)        val dc = (name, rep', lt)
924        val ts' = map (toTyc d) ts        val ts' = map (toTyc d o TP.VARty) ts
925     in if const then CON'(dc, ts', unitLexp)     in if const then CON'(dc, ts', unitLexp)
926        else (case apOp        else (case apOp
927               of SOME le => CON'(dc, ts', le)               of SOME le => CON'(dc, ts', le)
# Line 784  Line 932 
932                   end)                   end)
933    end    end
934    
935  fun mkStr (s as M.STR { access, info, ... }, d) =  fun mkStr (s as M.STR { access, prim, ... }, d) =
936      mkAccInfo(access, info, fn () => strLty(s, d, compInfo), NONE)      mkAccInfo(access, prim, fn () => strLty(s, d, compInfo), NONE)
937    | mkStr _ = bug "unexpected structures in mkStr"    | mkStr _ = bug "unexpected structures in mkStr"
938    
939  fun mkFct (f as M.FCT { access, info, ... }, d) =  fun mkFct (f as M.FCT { access, prim, ... }, d) =
940      mkAccInfo(access, info, fn () => fctLty(f, d, compInfo), NONE)      mkAccInfo(access, prim, fn () => fctLty(f, d, compInfo), NONE)
941    | mkFct _ = bug "unexpected functors in mkFct"    | mkFct _ = bug "unexpected functors in mkFct"
942    
943  fun mkBnd d =  fun mkBnd d =
# Line 810  Line 958 
958   *                                                                         *   *                                                                         *
959   * Translating core absyn declarations into lambda expressions:            *   * Translating core absyn declarations into lambda expressions:            *
960   *                                                                         *   *                                                                         *
961   *    val mkVBs  : Absyn.vb list * depth -> Lambda.lexp -> Lambda.lexp     *   *    val mkVBs  : Absyn.vb list * depth -> PLambda.lexp -> PLambda.lexp     *
962   *    val mkRVBs : Absyn.rvb list * depth -> Lambda.lexp -> Lambda.lexp    *   *    val mkRVBs : Absyn.rvb list * depth -> PLambda.lexp -> PLambda.lexp    *
963   *    val mkEBs  : Absyn.eb list * depth -> Lambda.lexp -> Lambda.lexp     *   *    val mkEBs  : Absyn.eb list * depth -> PLambda.lexp -> PLambda.lexp     *
964   *                                                                         *   *                                                                         *
965   ***************************************************************************)   ***************************************************************************)
966    
967    (* mkPE : Absyn.exp * depth * Types.tyvar list -> PLambda.lexp
968     * translate an expression with potential type parameters *)
969  fun mkPE (exp, d, []) = mkExp(exp, d)  fun mkPE (exp, d, []) = mkExp(exp, d)
970    | mkPE (exp, d, boundtvs) =    | mkPE (exp, d, boundtvs) =
971        let val savedtvs = map ! boundtvs        let val savedtvs = map ! boundtvs
972                (* save original contents of boundtvs for later restoration
973                 * by the restore function below *)
974    
975            fun g (i, []) = ()            fun setbtvs (i, []) = ()
976              | g (i, (tv as ref (TP.OPEN _))::rest) = let              | setbtvs (i, (tv as ref (TP.OPEN _))::rest) =
977                    val m = markLBOUND (d, i);                  let val m = markLBOUND (d, i)
978                in                   in tv := TP.TV_MARK m;
979                    tv := TP.TV_MARK m;                      setbtvs (i+1, rest)
                   g (i+1, rest)  
980                end                end
981              | g (i, (tv as ref (TP.TV_MARK _))::res) =              | setbtvs (i, (tv as ref (TP.TV_MARK _))::res) =
982                     bug ("unexpected tyvar TV_MARK in mkPE")                     bug ("unexpected tyvar TV_MARK in mkPE")
983              | g _ = bug "unexpected tyvar INSTANTIATED in mkPE"              | setbtvs _ = bug "unexpected tyvar INSTANTIATED in mkPE"
984    
985              val _ = setbtvs(0, boundtvs)
986                (* assign TV_MARKs to the boundtvs to mark them as type
987                 * parameter variables during translation of exp *)
988    
           val _ = g(0, boundtvs) (* assign the TV_MARK tyvars *)  
989            val exp' = mkExp(exp, DI.next d)            val exp' = mkExp(exp, DI.next d)
990                (* increase the depth to indicate that the expression is
991                 * going to be wrapped by a type abstraction (TFN) *)
992    
993            fun h ([], []) = ()            (* restore tyvar states to that before the translation *)
994              | h (a::r, b::z) = (b := a; h(r, z))            fun restore ([], []) = ()
995              | h _ = bug "unexpected cases in mkPE"              | restore (a::r, b::z) = (b := a; restore(r, z))
996                | restore _ = bug "unexpected cases in mkPE"
997    
998              (* [dbm, 6/22/06] Why do we need to restore the original
999                 contents of the uninstantiated meta type variables?
1000                 Only seems to be necessary if a given tyvar gets generalized
1001                 in two different valbinds. We assume that this does not
1002                 happen (Single Generalization Conjecture) *)
1003    
1004            val _ = h(savedtvs, boundtvs)  (* recover *)            val _ = restore(savedtvs, boundtvs)
1005            val len = length(boundtvs)            val len = length(boundtvs)
1006    
1007         in TFN(LT.tkc_arg(len), exp')         in TFN(LT.tkc_arg(len), exp')
1008        end        end
1009    
1010  and mkVBs (vbs, d) =  and mkVBs (vbs, d) =
1011    let fun eqTvs ([], []) = true    let fun mkVB (VB{pat=VARpat(V.VALvar{access=DA.LVAR v, ...}),
1012          | eqTvs (a::r, (TP.VARty b)::s) = if (a=b) then eqTvs(r, s) else false                     exp as VARexp (ref (w as (V.VALvar{typ,prim,...})), instvs),
1013          | eqTvs _ = false                     boundtvs=btvs, ...}, b: lexp) =
1014                (* [dbm: 7/10/06] Originally, the mkVar and mkPE translations
1015        fun g (VB{pat=VARpat(V.VALvar{access=DA.LVAR v, ...}),               * were chosen based on whether btvs and instvs were the same
1016                  exp as VARexp (ref (w as (V.VALvar _)), instys),               * list of tyvars, which would be the case for all non-primop
1017                  boundtvs=tvs, ...}, b) =               * variables, but also in the primop case whenever the rhs
1018                if eqTvs(tvs, instys) then LET(v, mkVar(w, d), b)               * variable environment type (!typ) was the same (equalTypeP)
1019                else LET(v, mkPE(exp, d, tvs), b)               * to the intrinsic type of the primop (e.g. when they are
1020                 * both monotypes).  So in most cases, the mkVar translation
1021          | g (VB{pat=VARpat(V.VALvar{access=DA.LVAR v, ...}),               * will be used, and this drops the primop information!!!
1022                  exp, boundtvs=tvs, ...}, b) = LET(v, mkPE(exp, d, tvs), b)               * This seems definitely wrong. *)
1023                (case prim
1024                  of PrimOpId.Prim name =>
1025                      (case PrimOpTypeMap.primopTypeMap name
1026                         of SOME(primopty) =>
1027                            if TU.equalTypeP(!typ,primopty)
1028                            then LET(v, mkVar(w, d), b)
1029                            else LET(v, mkPE(exp, d, btvs), b)
1030                          | NONE => bug "mkVBs: unknown primop name")
1031                   | _ => LET(v, mkVar(w, d), b))
1032                     (* when generalized variables = instantiation params *)
1033    
1034            | mkVB (VB{pat=VARpat(V.VALvar{access=DA.LVAR v, ...}),
1035                       exp, boundtvs=btvs, ...}, b) =
1036                LET(v, mkPE(exp, d, btvs), b)
1037    
1038            | mkVB (VB{pat=CONSTRAINTpat(VARpat(V.VALvar{access=DA.LVAR v, ...}),_),
1039                       exp, boundtvs=tvs, ...}, b) =
1040                LET(v, mkPE(exp, d, tvs), b)
1041    
1042          | g (VB{pat=CONSTRAINTpat(VARpat(V.VALvar{access=DA.LVAR v, ...}),_),          | mkVB (VB{pat, exp, boundtvs=tvs, ...}, b) =
                 exp, boundtvs=tvs, ...}, b) = LET(v, mkPE(exp, d, tvs), b)  
   
         | g (VB{pat, exp, boundtvs=tvs, ...}, b) =  
1043                let val ee = mkPE(exp, d, tvs)                let val ee = mkPE(exp, d, tvs)
1044                    val rules = [(fillPat(pat, d), b), (WILDpat, unitLexp)]                    val rules = [(fillPat(pat, d), b), (WILDpat, unitLexp)]
1045                    val rootv = mkv()                    val rootv = mkv()
1046                    fun finish x = LET(rootv, ee, x)                    fun finish x = LET(rootv, ee, x)
1047                 in MC.bindCompile(env, rules, finish, rootv, toTcLt d, complain)               in MC.bindCompile(env, rules, finish, rootv, toTcLt d, complain,
1048                end                                 genintinfswitch)
    in fold g vbs  
1049    end    end
1050    
1051       in fold mkVB vbs
1052      end (* mkVBs *)
1053    
1054  and mkRVBs (rvbs, d) =  and mkRVBs (rvbs, d) =
1055    let fun g (RVB{var=V.VALvar{access=DA.LVAR v, typ=ref ty, ...},    let fun mkRVB (RVB{var=V.VALvar{access=DA.LVAR v, typ=ref ty, ...},
1056                   exp, boundtvs=tvs, ...}, (vlist, tlist, elist)) =                       exp, boundtvs=btvs, ...}, (vlist, tlist, elist)) =
1057                 let val ee = mkExp(exp, d) (* was mkPE(exp, d, tvs) *)              let val ee = mkExp(exp, d) (* was mkPE(exp, d, btvs) *)
1058                         (* we no longer track type bindings at RVB anymore ! *)                  (* [ZHONG?] we no longer track type bindings at RVB anymore ! *)
1059                     val vt = toLty d ty                     val vt = toLty d ty
1060                  in (v::vlist, vt::tlist, ee::elist)                  in (v::vlist, vt::tlist, ee::elist)
1061                 end                 end
1062          | g _ = bug "unexpected valrec bindings in mkRVBs"          | mkRVB _ = bug "unexpected valrec bindings in mkRVBs"
1063    
1064        val (vlist, tlist, elist) = foldr g ([], [], []) rvbs        val (vlist, tlist, elist) = foldr mkRVB ([], [], []) rvbs
1065    
1066     in fn b => FIX(vlist, tlist, elist, b)     in fn b => FIX(vlist, tlist, elist, b)
1067    end    end
# Line 908  Line 1089 
1089   *                                                                         *   *                                                                         *
1090   * Translating module exprs and decls into lambda expressions:             *   * Translating module exprs and decls into lambda expressions:             *
1091   *                                                                         *   *                                                                         *
1092   *    val mkStrexp : Absyn.strexp * depth -> Lambda.lexp                   *   *    val mkStrexp : Absyn.strexp * depth -> PLambda.lexp                   *
1093   *    val mkFctexp : Absyn.fctexp * depth -> Lambda.lexp                   *   *    val mkFctexp : Absyn.fctexp * depth -> PLambda.lexp                   *
1094   *    val mkStrbs  : Absyn.strb list * depth -> Lambda.lexp -> Lambda.lexp *   *    val mkStrbs  : Absyn.strb list * depth -> PLambda.lexp -> PLambda.lexp *
1095   *    val mkFctbs  : Absyn.fctb list * depth -> Lambda.lexp -> Lambda.lexp *   *    val mkFctbs  : Absyn.fctb list * depth -> PLambda.lexp -> PLambda.lexp *
1096   *                                                                         *   *                                                                         *
1097   ***************************************************************************)   ***************************************************************************)
1098  and mkStrexp (se, d) =  and mkStrexp (se, d) =
# Line 981  Line 1162 
1162  (***************************************************************************  (***************************************************************************
1163   * Translating absyn decls and exprs into lambda expression:               *   * Translating absyn decls and exprs into lambda expression:               *
1164   *                                                                         *   *                                                                         *
1165   *    val mkExp : A.exp * DI.depth -> L.lexp                               *   *    val mkExp : A.exp * DI.depth -> PLambda.lexp                         *
1166   *    val mkDec : A.dec * DI.depth -> L.lexp -> L.lexp                     *   *    val mkDec : A.dec * DI.depth -> PLambda.lexp -> PLambda.lexp         *
1167   *                                                                         *   *                                                                         *
1168   ***************************************************************************)   ***************************************************************************)
1169  and mkDec (dec, d) =  and mkDec (dec, d) =
1170    let fun g (VALdec vbs) = mkVBs(vbs, d)    let fun g (VALdec vbs) = (print "VALdec"; mkVBs(vbs, d))
1171          | g (VALRECdec rvbs) = mkRVBs(rvbs, d)          | g (VALRECdec rvbs) = (print "VALRECdec"; mkRVBs(rvbs, d))
1172          | g (ABSTYPEdec{body,...}) = g body          | g (ABSTYPEdec{body,...}) = g body
1173          | g (EXCEPTIONdec ebs) = mkEBs(ebs, d)          | g (EXCEPTIONdec ebs) = (print "EXCEPTIONdec"; mkEBs(ebs, d))
1174          | g (STRdec sbs) = mkStrbs(sbs, d)          | g (STRdec sbs) = (print "STRdec"; mkStrbs(sbs, d))
1175          | g (ABSdec sbs) = mkStrbs(sbs, d)          | g (ABSdec sbs) = (print "ABSdec"; mkStrbs(sbs, d))
1176          | g (FCTdec fbs) = mkFctbs(fbs, d)          | g (FCTdec fbs) = (print "FCTdec"; mkFctbs(fbs, d))
1177          | g (LOCALdec(ld, vd)) = (g ld) o (g vd)          | g (LOCALdec(ld, vd)) = (g ld) o (g vd)
1178          | g (SEQdec ds) =  foldr (op o) ident (map g ds)          | g (SEQdec ds) =  foldr (op o) ident (map g ds)
1179          | g (MARKdec(x, reg)) =          | g (MARKdec(x, reg)) =
# Line 1020  Line 1201 
1201    
1202        fun mkRules xs = map (fn (RULE(p, e)) => (fillPat(p, d), g e)) xs        fun mkRules xs = map (fn (RULE(p, e)) => (fillPat(p, d), g e)) xs
1203    
1204        and g (VARexp (ref v, ts)) = mkVE(v, ts, d)        and g (VARexp (ref v, ts)) =
1205                (print "mkExp VARexp\n"; mkVE(v, map TP.VARty ts, d))
         | g (CONexp (dc, ts)) = mkCE(dc, ts, NONE, d)  
         | g (APPexp (CONexp(dc, ts), e2)) = mkCE(dc, ts, SOME(g e2), d)  
1206    
1207            | g (CONexp (dc, ts)) = (let val _ = print "mkExp CONexp: "
1208                                         val c = mkCE(dc, ts, NONE, d)
1209                                         val _ = PPLexp.printLexp c
1210                                     in c end)
1211            | g (APPexp (CONexp(dc, ts), e2)) = (let val _ = print "mkExp APPexp: "
1212                                                     val c = mkCE(dc, ts, SOME(g e2), d)
1213                                                     val _ = PPLexp.printLexp c
1214                                                 in c end)
1215          | g (INTexp (s, t)) =          | g (INTexp (s, t)) =
1216              (print "mkExp INTexp\n";
1217               ((if TU.equalType (t, BT.intTy) then INT (LN.int s)               ((if TU.equalType (t, BT.intTy) then INT (LN.int s)
1218                 else if TU.equalType (t, BT.int32Ty) then INT32 (LN.int32 s)                 else if TU.equalType (t, BT.int32Ty) then INT32 (LN.int32 s)
1219                   else if TU.equalType (t, BT.intinfTy) then VAR (getII s)
1220                   else if TU.equalType (t, BT.int64Ty) then
1221                       let val (hi, lo) = LN.int64 s
1222                       in RECORD [WORD32 hi, WORD32 lo]
1223                       end
1224                      else bug "translate INTexp")                      else bug "translate INTexp")
1225                 handle Overflow => (repErr "int constant too large"; INT 0))                handle Overflow => (repErr "int constant too large"; INT 0)))
1226    
1227          | g (WORDexp(s, t)) =          | g (WORDexp(s, t)) =
1228              (print "WORDexp\n";
1229               ((if TU.equalType (t, BT.wordTy) then WORD (LN.word s)               ((if TU.equalType (t, BT.wordTy) then WORD (LN.word s)
1230                 else if TU.equalType (t, BT.word8Ty)                 else if TU.equalType (t, BT.word8Ty) then WORD (LN.word8 s)
1231                      then WORD (LN.word8 s)                 else if TU.equalType (t, BT.word32Ty) then WORD32 (LN.word32 s)
1232                      else if TU.equalType (t, BT.word32Ty)                 else if TU.equalType (t, BT.word64Ty) then
1233                           then WORD32 (LN.word32 s)                     let val (hi, lo) = LN.word64 s
1234                           else (ppType t;                     in RECORD [WORD32 hi, WORD32 lo]
1235                                 bug "translate WORDexp"))                     end
1236                 handle Overflow => (repErr "word constant too large"; INT 0))                 else (ppType t; bug "translate WORDexp"))
1237                   handle Overflow => (repErr "word constant too large"; INT 0)))
1238    
1239          | g (REALexp s) = REAL s          | g (REALexp s) = REAL s
1240          | g (STRINGexp s) = STRING s          | g (STRINGexp s) = STRING s
# Line 1069  Line 1264 
1264               end               end
1265    
1266          | g (PACKexp(e, ty, tycs)) = g e          | g (PACKexp(e, ty, tycs)) = g e
1267  (*  (* [dbm, 7/10/06]: Does PACKexp do anything now? What was it doing before
1268     * this was commented out? This appears to be the only place reformat was called
1269     * Is it also the only place the FLINT PACK constructor is used? [KM???] *)
1270    (* (commented out by whom, when why?)
1271               let val (nty, ks, tps) = TU.reformat(ty, tycs, d)               let val (nty, ks, tps) = TU.reformat(ty, tycs, d)
1272                   val ts = map (tpsTyc d) tps                   val ts = map (tpsTyc d) tps
1273                   (** use of LtyEnv.tcAbs is a temporary hack (ZHONG) **)                   (** use of LtyEnv.tcAbs is a temporary hack (ZHONG) **)
# Line 1089  Line 1287 
1287          | g (CONSTRAINTexp (e,_)) = g e          | g (CONSTRAINTexp (e,_)) = g e
1288    
1289          | g (RAISEexp (e, ty)) = mkRaise(g e, tLty ty)          | g (RAISEexp (e, ty)) = mkRaise(g e, tLty ty)
1290          | g (HANDLEexp (e, HANDLER(FNexp(l, ty)))) =          | g (HANDLEexp (e, (l, ty))) =
1291               let val rootv = mkv()               let val rootv = mkv()
1292                   fun f x = FN(rootv, tLty ty, x)                   fun f x = FN(rootv, tLty ty, x)
1293                   val l' = mkRules l                   val l' = mkRules l
1294                in HANDLE(g e, MC.handCompile(env, l', f,                in HANDLE(g e, MC.handCompile(env, l', f,
1295                                              rootv, toTcLt d, complain))                                              rootv, toTcLt d, complain,
1296                                                genintinfswitch))
1297               end               end
1298    
1299          | g (FNexp (l, ty)) =          | g (FNexp (l, ty)) =
1300               let val rootv = mkv()               let val rootv = mkv()
1301                   fun f x = FN(rootv, tLty ty, x)                   fun f x = FN(rootv, tLty ty, x)
1302                in MC.matchCompile (env, mkRules l, f, rootv, toTcLt d, complain)                in MC.matchCompile (env, mkRules l, f, rootv, toTcLt d,
1303                                      complain, genintinfswitch)
1304               end               end
1305    
1306          | g (CASEexp (ee, l, isMatch)) =          | g (CASEexp (ee, l, isMatch)) =
# Line 1109  Line 1309 
1309                   fun f x = LET(rootv, ee', x)                   fun f x = LET(rootv, ee', x)
1310                   val l' = mkRules l                   val l' = mkRules l
1311                in if isMatch                in if isMatch
1312                   then MC.matchCompile (env, l', f, rootv, toTcLt d, complain)                   then MC.matchCompile (env, l', f, rootv, toTcLt d,
1313                   else MC.bindCompile (env, l', f, rootv, toTcLt d, complain)                                         complain, genintinfswitch)
1314                     else MC.bindCompile (env, l', f, rootv, toTcLt d,
1315                                          complain, genintinfswitch)
1316                 end
1317    
1318            | g (IFexp { test, thenCase, elseCase }) =
1319                COND (g test, g thenCase, g elseCase)
1320    
1321            | g (ANDALSOexp (e1, e2)) =
1322                COND (g e1, g e2, falseLexp)
1323    
1324            | g (ORELSEexp (e1, e2)) =
1325                COND (g e1, trueLexp, g e2)
1326    
1327            | g (WHILEexp { test, expr }) =
1328                let val fv = mkv ()
1329                    val body =
1330                        FN (mkv (), lt_unit,
1331                            COND (g test,
1332                                  LET (mkv (), g expr, APP (VAR fv, unitLexp)),
1333                                  unitLexp))
1334                in
1335                    FIX ([fv], [lt_u_u], [body], APP (VAR fv, unitLexp))
1336               end               end
1337    
1338          | g (LETexp (dc, e)) = mkDec (dc, d) (g e)          | g (LETexp (dc, e)) = mkDec (dc, d) (g e)
1339    
1340          | g e =          | g e =
1341               EM.impossibleWithBody "untranslateable expression"               EM.impossibleWithBody "untranslateable expression"
1342                (fn ppstrm => (PP.add_string ppstrm " expression: ";                (fn ppstrm => (PP.string ppstrm " expression: ";
1343                              PPAbsyn.ppExp (env,NONE) ppstrm (e, !ppDepth)))                              PPAbsyn.ppExp (env,NONE) ppstrm (e, !ppDepth)))
1344    
1345     in g exp     in g exp
1346    end    end
1347    
1348    and transIntInf d s =
1349        (* This is a temporary solution.  Since IntInf literals
1350         * are created using a core function call, there is
1351         * no indication within the program that we are really
1352         * dealing with a constant value that -- in principle --
1353         * could be subject to such things as constant folding. *)
1354        let val consexp = CONexp (BT.consDcon, [ref (TP.INSTANTIATED BT.wordTy)])
1355            fun build [] = CONexp (BT.nilDcon, [ref (TP.INSTANTIATED BT.wordTy)])
1356              | build (d :: ds) = let
1357                    val i = Word.toIntX d
1358                in
1359                    APPexp (consexp,
1360                            EU.TUPLEexp [WORDexp (IntInf.fromInt i, BT.wordTy),
1361                                         build ds])
1362                end
1363            fun small w =
1364                APP (coreAcc (if LN.isNegative s then "makeSmallNegInf"
1365                              else "makeSmallPosInf"),
1366                     mkExp (WORDexp (IntInf.fromInt (Word.toIntX w), BT.wordTy),
1367                            d))
1368        in
1369            case LN.repDigits s of
1370                [] => small 0w0
1371              | [w] => small w
1372              | ws => APP (coreAcc (if LN.isNegative s then "makeNegInf"
1373                                    else "makePosInf"),
1374                           mkExp (build ws, d))
1375        end
1376    
1377    (* Wrap bindings for IntInf.int literals around body. *)
1378    fun wrapII body = let
1379        fun one (n, v, b) = LET (v, transIntInf DI.top n, b)
1380    in
1381        IIMap.foldli one body (!iimap)
1382    end
1383    
1384  (* wrapPidInfo: lexp * (pid * pidInfo) list -> lexp * importTree *)  (* wrapPidInfo: lexp * (pid * pidInfo) list -> lexp * importTree *)
1385  fun wrapPidInfo (body, pidinfos) =  fun wrapPidInfo (body, pidinfos) =
# Line 1183  Line 1440 
1440  (** translating the ML absyn into the PLambda expression *)  (** translating the ML absyn into the PLambda expression *)
1441  val body = mkDec (rootdec, DI.top) exportLexp  val body = mkDec (rootdec, DI.top) exportLexp
1442    
1443    (** add bindings for intinf constants *)
1444    val body = wrapII body
1445    
1446  (** wrapping up the body with the imported variables *)  (** wrapping up the body with the imported variables *)
1447  val (plexp, imports) = wrapPidInfo (body, Map.listItemsi (!persmap))  val (plexp, imports) = wrapPidInfo (body, PersMap.listItemsi (!persmap))
1448    
1449  fun prGen (flag,printE) s e =  fun prGen (flag,printE) s e =
1450    if !flag then (say ("\n\n[After " ^ s ^ " ...]\n\n"); printE e) else ()    if !flag then (say ("\n\n[After " ^ s ^ " ...]\n\n"); printE e) else ()
1451  val _ = prGen(Control.FLINT.print, PPLexp.printLexp) "Translate" plexp  val _ = prGen(Control.FLINT.print, PPLexp.printLexp) "Translate" plexp
1452    
1453  (** normalizing the plambda expression into FLINT *)  (** normalizing the plambda expression into FLINT *)
1454  val flint = FlintNM.norm plexp  val flint = let val _ = print "prenorm\n"
1455                    val n = FlintNM.norm plexp
1456                    val _ = print "postnorm\n"
1457                in n end
1458    
1459  in {flint = flint, imports = imports}  in {flint = flint, imports = imports}
1460  end (* function transDec *)  end (* function transDec *)

Legend:
Removed from v.1183  
changed lines
  Added in v.1981

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0