Home My Page Projects Code Snippets Project Openings SML/NJ
Summary Activity Forums Tracker Lists Tasks Docs Surveys News SCM Files

SCM Repository

[smlnj] View of /sml/trunk/src/MLRISC/mltree/mltree-gen.sml
ViewVC logotype

View of /sml/trunk/src/MLRISC/mltree/mltree-gen.sml

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1183 - (download) (annotate)
Fri Mar 29 19:09:48 2002 UTC (17 years, 5 months ago) by blume
File size: 10270 byte(s)
division primops, inline primops for min/max/abs
(* mltree-gen.sml
 *
 * COPYRIGHT (c) 2002 Bell Labs, Lucent Technologies
 *
 * This is a generic module for transforming MLTREE expressions:
 *   (1) expressions involving non-standard type widths are promoted when
 *       necessary.
 *   (2) operators that cannot be directly handled are expanded into 
 *       more complex instruction sequences when necessary.
 * 
 * -- Allen
 *)

functor MLTreeGen (
    structure T : MLTREE
    structure Cells : CELLS
    val intTy : T.ty (* size of integer word *)

     (* This is a list of possible data widths to promote to.
      * The list must be in increasing sizes.  
      * We'll try to promote to the next largest size.
      *)
    val naturalWidths : T.ty list  

     (*
      * Are integers of widths less than the size of integer word.
      * automatically sign extended, zero extended, or neither.
      * When in doubt, choose neither since it is conservative.
      *)
    datatype rep = SE | ZE | NEITHER
    val rep : rep

  ) : MLTREEGEN = struct

   structure T = T
   structure Size = MLTreeSize(structure T = T val intTy = intTy)
   structure C  = CellsBasis

   fun error msg = MLRiscErrorMsg.error("MLTreeGen",msg)
   fun unsupported what = error ("unsupported: " ^ what)

   val zeroT = T.LI(T.I.int_0)
   fun LI i = T.LI(T.I.fromInt(intTy, i))

   fun condOf(T.CC(cc,_)) = cc
     | condOf(T.CMP(_,cc,_,_)) = cc
     | condOf(T.CCMARK(cc,_)) = condOf cc
     | condOf _ = error "condOf"

   fun fcondOf(T.FCC(fcc,_)) = fcc
     | fcondOf(T.FCMP(_,fcc,_,_)) = fcc
     | fcondOf(T.CCMARK(cc,_)) = fcondOf cc
     | fcondOf _ = error "fcondOf"

   val W = intTy

   (* To compute f.ty(a,b) 
    *
    * let r1 <- a << (intTy - ty)
    *     r2 <- b << (intTy - ty)
    *     r3 <- f(a,b) 
    * in  r3 ~>> (intTy - ty) end
    * 
    * Lal showed me this neat trick!
    *)
   fun arith(rightShift,f,ty,a,b) = 
       let val shift = LI(W-ty)
       in  rightShift(W,f(W,T.SLL(W,a,shift),T.SLL(W,b,shift)),shift)
       end

   fun promoteTy(ty) =
   let fun loop([]) = 
           unsupported("can't promote integer width "^Int.toString ty)
         | loop(t::ts) = if t > ty then t else loop ts
   in  loop(naturalWidths) end

   fun promotable rightShift (e, f, ty, a, b) =
       case naturalWidths of 
         [] => arith(rightShift,f,ty,a,b) 
       | _  => f(promoteTy(ty), a, b)

   fun isNatural w = let
       fun loop [] = false
	 | loop (h :: t) = h = w orelse w > h andalso loop t
   in
       loop naturalWidths
   end

   (* Implement division with round-to-negative-infinity in terms
    * of division with round-to-zero. *)
   fun divinf (xdiv, ty, aexp, bexp) = let
       val a = Cells.newReg ()
       val b = Cells.newReg ()
       val q = Cells.newReg ()
       val r = Cells.newReg ()
       val zero = T.LI T.I.int_0
       val one = T.LI T.I.int_1
   in
       T.LET (T.SEQ [T.MV (ty, a, aexp),
		     T.MV (ty, b, bexp),
		     T.MV (ty, q, xdiv (T.DIV_TO_ZERO, ty, T.REG (ty, a),
					                   T.REG (ty, b))),
		     T.IF (T.CMP (ty, T.Basis.GE, T.REG (ty, q), zero),
			   T.SEQ [],
			   T.IF (T.CMP (ty, T.Basis.EQ,
					    T.REG (ty, a),
					    T.MULS (ty, T.REG (ty, q),
						        T.REG (ty, b))),
				 T.SEQ [],
				 T.MV (ty, q, T.SUB (ty, T.REG (ty, q),
						         one))))],
	      T.REG(ty,q))
   end

   (* Same for rem when rounding to negative infinity.
    * The odd case is when a = MININT and b = -1 in which case the DIVS op
    * will overflow.  But the subsequent MULS will overflow in such a way that
    * the results cancel.  Thus, the correct result of 0 will come out. *)
   fun reminf (ty, aexp, bexp) = let
       val a = Cells.newReg ()
       val b = Cells.newReg ()
       val q = Cells.newReg ()
       val r = Cells.newReg ()
       val zero = T.LI T.I.int_0
   in
       T.LET (T.SEQ [T.MV (ty, a, aexp),
		     T.MV (ty, b, bexp),
		     T.MV (ty, q, T.DIVS (T.DIV_TO_ZERO, ty, T.REG (ty, a),
					                     T.REG (ty, b))),
		     T.MV (ty, r, T.SUB (ty, T.REG (ty, a),
					     T.MULS (ty, T.REG (ty, q),
						         T.REG (ty, b)))),
		     T.IF (T.CMP (ty, T.Basis.GE, T.REG (ty, q), zero),
			   T.SEQ [],
			   T.IF (T.CMP (ty, T.Basis.EQ, T.REG (ty, r), zero),
				 T.SEQ [],
				 T.MV (ty, r, T.ADD (ty, T.REG (ty, r),
					                 T.REG (ty, b)))))],
	      T.REG (ty, r))
   end

   (* Same for rem when rounding when rounding to zero. *)
   fun remzero (xdiv, xmul, ty, aexp, bexp) = let
       val a = Cells.newReg ()
       val b = Cells.newReg ()
   in
       T.LET (T.SEQ [T.MV (ty, a, aexp),
		     T.MV (ty, b, bexp)],
	      T.SUB (ty, T.REG (ty, a),
		         xmul (ty, T.REG (ty, b),
			           xdiv (T.DIV_TO_ZERO, ty, T.REG (ty, a),
					                    T.REG (ty, b)))))
   end

   (*
    * Translate integer expressions of unknown types into the appropriate
    * term.
    *)

   fun DIVREMz d (ty, a, b) = d (T.DIV_TO_ZERO, ty, a, b)

   fun compileRexp(exp) = 
       case exp of
         T.CONST c => T.LABEXP exp

         (* non overflow trapping ops *)
       | T.NEG(ty,a)    => T.SUB(ty, zeroT, a)
       | T.ADD(ty,a,b)  => promotable T.SRA (exp,T.ADD,ty,a,b)
       | T.SUB(ty,a,b)  => promotable T.SRA (exp,T.SUB,ty,a,b)
       | T.MULS(ty,a,b) => promotable T.SRA (exp,T.MULS,ty,a,b)
       | T.DIVS(T.DIV_TO_ZERO,ty,a,b) =>
	                   promotable T.SRA (exp,DIVREMz T.DIVS,ty,a,b)
       | T.DIVS(T.DIV_TO_NEGINF,ty,a,b) => divinf (T.DIVS,ty,a,b)
       | T.REMS(T.DIV_TO_ZERO,ty,a,b) =>
	 if isNatural ty then remzero (T.DIVS,T.MULS,ty,a,b)
	 else promotable T.SRA (exp,DIVREMz T.REMS,ty,a,b)
       | T.REMS(T.DIV_TO_NEGINF,ty,a,b) => reminf (ty,a,b)
       | T.MULU(ty,a,b) => promotable T.SRL (exp,T.MULU,ty,a,b)
       | T.DIVU(ty,a,b) => promotable T.SRL (exp,T.DIVU,ty,a,b)
       | T.REMU(ty,a,b) =>
	 if isNatural ty then
	     remzero (fn (_,ty,a,b) => T.DIVU (ty,a,b),T.MULU,ty,a,b)
	 else promotable T.SRL (exp,T.REMU,ty,a,b)

         (* for overflow trapping ops; we have to do the simulation *)
       | T.NEGT(ty,a)   => T.SUBT(ty,zeroT,a)
       | T.ADDT(ty,a,b) => arith (T.SRA,T.ADDT,ty,a,b)
       | T.SUBT(ty,a,b) => arith (T.SRA,T.SUBT,ty,a,b)
       | T.MULT(ty,a,b) => arith (T.SRA,T.MULT,ty,a,b)
       | T.DIVT(T.DIV_TO_ZERO,ty,a,b) => arith (T.SRA,DIVREMz T.DIVT,ty,a,b)
       | T.DIVT(T.DIV_TO_NEGINF,ty,a,b) => divinf (T.DIVT,ty,a,b)

         (* conditional evaluation rules *)
(*** XXX: Seems wrong.
       | T.COND(ty,T.CC(cond,r),x,y) =>
           T.COND(ty,T.CMP(ty,cond,T.REG(ty,r),zeroT),x,y)
***)
       | T.COND(ty,T.CCMARK(cc,a),x,y) => T.MARK(T.COND(ty,cc,x,y),a)
(*** XXX: TODO
       | T.COND(ty,T.CMP(t,cc,e1,e2),x as (T.LI 0 | T.LI32 0w0),y) => 
           T.COND(ty,T.CMP(t,T.Basis.negateCond cc,e1,e2),y,T.LI 0)
           (* we'll let others strength reduce the multiply *)
***)
       | T.COND(ty,cc as T.FCMP _, yes, no) => let
	  val tmp = Cells.newReg()
          in 
	    T.LET(
	      T.SEQ[T.MV(ty, tmp, no), T.IF(cc, T.MV(ty, tmp, yes), T.SEQ [])],
              T.REG(ty,tmp))
          end
(*** XXX: TODO
       | T.COND(ty,cc,e1,(T.LI 0 | T.LI32 0w0)) => 
           T.MULU(ty,T.COND(ty,cc,T.LI 1,T.LI 0),e1)
       | T.COND(ty,cc,T.LI m,T.LI n) =>
           T.ADD(ty,T.MULU(ty,T.COND(ty,cc,T.LI 1,T.LI 0),T.LI(m-n)),T.LI n)
***)

       | T.COND(ty,cc,e1,e2) => 
           T.ADD(ty,T.MULU(ty,T.COND(ty,cc,T.LI T.I.int_1,zeroT),T.SUB(ty,e1,e2)),e2)

       (* ones-complement.
        * WARNING: we are assuming two's complement architectures here.
        * Are there any architectures in use nowadays that doesn't use 
        * two's complement for integer arithmetic?
        *)
       | T.NOTB(ty,e) => T.XORB(ty,e,T.LI T.I.int_m1)

       (* 
        * Default ways of converting integers to integers
        *)
       | T.SX(ty,fromTy,e) => 
         if fromTy = ty then e
         else if rep = SE andalso fromTy < ty andalso 
              fromTy >= hd naturalWidths then e 
         else
             let val shift = T.LI(T.I.fromInt(intTy, W - fromTy))
             in  T.SRA(W,T.SLL(W,e,shift),shift) 
             end 
       | T.ZX(ty,fromTy,e) => 
         if fromTy <= ty then e else 
            (case ty of (* ty < fromTy *)
                8  => T.ANDB(ty,e,T.LI T.I.int_0xff) 
              | 16 => T.ANDB(ty,e,T.LI T.I.int_0xffff)
              | 32 => T.ANDB(ty,e,T.LI T.I.int_0xffffffff)
              | 64 => e
              | _  => unsupported("unknown expression")
            )

       (* 
        * Converting floating point to integers.
        * The following rule handles the case when ty is not
        * one of the naturally supported widths on the machine.
        *)
       | T.CVTF2I(ty,round,fty,e) => 
         let val ty' = promoteTy(ty)
         in  T.SX(ty,ty',T.CVTF2I(ty',round,fty,e))
         end

         (* Promote to higher width and zero high bits *)
       | T.SLL(ty, data, shift) => 
         let val ty' = promoteTy(ty)
         in  T.ZX(ty, ty', T.SLL(ty', data, shift)) end

       | exp => unsupported("unknown expression")

   fun compileFexp fexp = unsupported("unknown expression")

   fun mark(s,[]) = s
     | mark(s,a::an) = mark(T.ANNOTATION(s,a),an)

   fun compileStm (T.SEQ s) = s
     | compileStm (T.IF(cond,T.JMP(T.LABEL L,_),T.SEQ [])) = 
           [T.BCC(cond,L)]
     | compileStm (T.IF(cond,yes,no)) = 
       let val L1 = Label.anon()
           val L2 = Label.anon()
       in  [T.BCC(cond,L1),
            no,
            T.JMP(T.LABEL L2,[]),
            T.DEFINE L1,
            yes,
            T.DEFINE L2
           ]
       end
     | compileStm stm = error "compileStm"

   (*
    * This function translations conditional expressions into a 
    * branch sequence.  
    * Note: we'll actually take advantage of the fact that 
    * e1 and e2 are allowed to be eagerly evaluated. 
    *)
   fun compileCond{exp=(ty,ccexp,e1,e2),rd,an} =
   let val L1 = Label.anon()
   in  [T.MV(ty,rd,e1),
        mark(T.BCC(ccexp,L1),an),
        T.MV(ty,rd,e2),
        T.DEFINE L1
       ]
   end
   fun compileFcond{exp=(fty,ccexp,e1,e2),fd,an} =
   let val L1 = Label.anon()
   in  [T.FMV(fty,fd,e1),
        mark(T.BCC(ccexp,L1),an),
        T.FMV(fty,fd,e2),
        T.DEFINE L1
       ]
   end
 
end

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0