SCM Repository
View of /sml/trunk/src/MLRISC/ppc/ppc.mdl
Parent Directory
|
Revision Log
Revision 1009 -
(download)
(annotate)
Wed Jan 9 19:44:22 2002 UTC (19 years, 1 month ago) by george
File size: 28632 byte(s)
Wed Jan 9 19:44:22 2002 UTC (19 years, 1 month ago) by george
File size: 28632 byte(s)
Removed the native COPY and FCOPY instructions from all the architectures and replaced it with the explicit COPY instruction from the previous commit. It is now possible to simplify many of the optimizations modules that manipulate copies. This has not been done in this change.
(* * This is the machine description file of PowerPC derived from Lal's code. * I have no idea what the instructions do so it probably won't work. * * Note: I've now added lots of instructions for 64-bit and single precision * floating point support. * * I'm using Book E: PowerPC Architecture Enhanced for Embedded Applications * as the reference * * -- Allen *) architecture PPC = struct superscalar big endian lowercase assembly storage GP = $r[32] of 64 bits asm: (fn (r,_) => Int.toString r) | FP = $f[32] of 64 bits asm: (fn (f,_) => Int.toString f) | CC = $cc[8] of 4 bits asm: (fn (cr,_) => "cr"^Int.toString cr) | SPR = $spr[32] of 64 bits asm: (fn (1,_) => "xer" | (8,_) => "lr" | (9,_) => "ctr" | (r,_) => Int.toString r ) | MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r) | CTRL = $ctrl[] of 8 bits asm: (fn (r,_) => "ctrl"^Int.toString r) locations stackptrR = $r[1] and asmTmpR = $r[28] and fasmTmp = $f[0] and r0 = $r[0] (* the encoding of these are from page 372 *) and xer = $spr[1] (* Integer exception register *) and lr = $spr[8] (* Link register *) and ctr = $spr[9] (* counter register *) structure RTL = struct end structure Instruction = struct type gpr = int (* general purpose register *) type fpr = int (* floating point register *) type ccr = int (* condition code register *) type crf = int (* condition register field *) datatype spr! = XER | LR | CTR datatype operand = RegOp of $GP ``<GP>'' (emit_GP GP) rtl: $r[GP] | ImmedOp of int ``<int>'' (itow int) rtl: immed int | LabelOp of T.labexp ``<emit_labexp labexp>'' (itow(MLTreeEval.valueOf labexp)) type addressing_mode = CellsBasis.cell * operand datatype ea = Direct of $GP | FDirect of $FP | Displace of {base: $GP, disp:operand} (* RegOp illegal as operand *) (* Load/store operators that have the E suffix means that 64-bit * addressing is used. Note: the x suffix is implicitly added if rb is a * register. * * -- Allen *) datatype load! = LBZ (* load byte and zero *) | LBZE | LHZ (* load half word and zero *) | LHZE | LHA (* load half word algebraic *) | LHAE | LWZ (* load word and zero *) | LWZE | LDE (* load double word extended * Note: there is no LD or LDX!!! *) datatype store! = STB | STBE | STH | STHE | STW | STWE | STDE datatype fload! = LFS | LFSE | LFD | LFDE datatype fstore! = STFS | STFSE | STFD | STFDE datatype cmp! = CMP | CMPL datatype fcmp! = FCMPO 0w32 (* ordered *) | FCMPU 0w0 (* unordered *) (* xo *) datatype unary! = NEG 0w104 | EXTSB 0w954 (* extend sign byte *) | EXTSH 0w922 (* extend sign halfword *) | EXTSW 0w986 (* extend sign word *) | CNTLZW 0w26 (* count leading zeros word *) | CNTLZD 0w58 (* count leading zeros double word *) (* opcd/xo *) datatype funary! = FMR (0w63,0w72) | FNEG (0w63,0w40) | FABS (0w63,0w264) | FNABS (0w63,0w136) | FSQRT (0w63,0w22) | FSQRTS (0w59,0w22) | FRSP (0w63,0w12) (* round to single precision *) | FCTIW (0w63,0w14) (* convert to integer word *) | FCTIWZ (0w63,0w15) (* convert to integer word *) | FCTID (0w63,0w814) (* convert to double word *) | FCTIDZ (0w63,0w815) (* convert to double word *) | FCFID (0w63,0w846) (* convert from double word *) (* opcd/xo *) datatype farith! = FADD (0w63,0w21) | FSUB (0w63,0w20) | FMUL (0w63,0w25) | FDIV (0w63,0w18) | FADDS (0w59,0w21) | FSUBS (0w59,0w20) | FMULS (0w59,0w25) | FDIVS (0w59,0w18) (* opcd, xo *) datatype farith3! = FMADD (0w63,0w29) | FMADDS (0w59,0w29) | FMSUB (0w63,0w28) | FMSUBS (0w59,0w28) | FNMADD (0w63,0w31) | FNMADDS (0w59,0w31) | FNMSUB (0w63,0w30) | FNMSUBS (0w59,0w30) | FSEL (0w63,0w23) (* floating point select *) datatype bo = TRUE 0wb01100 (* 011zy *) | FALSE 0wb00100 (* 001zy *) | ALWAYS 0wb10100 (* 1z1zz *) | COUNTER of {eqZero:bool, cond:bool option} (case cond of NONE => if eqZero then 0wb10010 (* 1z01y *) else 0wb10000 (* 1z00y *) | SOME cc => case (eqZero,cc) of (false,false) => 0wb00000 (* 0000y *) | (false,true) => 0wb01000 (* 0100y *) | (true,false) => 0wb00010 (* 0001y *) | (true,true) => 0wb01010 (* 0101y *) ) (* operation ARITH ARITHI *) datatype arith! = (* --------- ----- ------ *) (* xo *) ADD 0w266 (* add add addi *) | SUBF 0w40 (* subtract from subf subfic *) | MULLW 0w235 (* multiply mullw mulli *) | MULLD 0w233 (* multiply double word mulld - *) | MULHW 0w75 (* multiply high word mulhw - *) | MULHWU 0w11 (* multiply high word unsigned mulhwu - *) | DIVW 0w491 (* divide word divw - *) | DIVD 0w489 (* divide doubleword divd - *) | DIVWU 0w459 (* divide word unsigned divwu - *) | DIVDU 0w457 (* divide doubleword unsigned divdu - *) | AND 0w28 (* and and andi *) | OR 0w444 (* or or ori *) | XOR 0w316 (* xor xor xori *) | NAND 0w476 (* nand *) | NOR 0w124 (* nor *) | EQV 0w284 (* eqv *) | ANDC 0w60 (* and with complement andc - *) | ORC 0w412 (* or with complement orc - *) | SLW 0w24 (* shift left word slw rlwinm *) | SLD 0w27 (* shift left double word sld rldinm *) | SRW 0w536 (* shift right word srw rlwinm *) | SRD 0w539 (* shift right double word srd rldinm *) | SRAW 0w792 (* shift right algebraic word sraw srawi *) | SRAD 0w794 (* shift right algebraic dword srad sradi *) datatype arithi! = (* --------- ----- ------ *) (* opcd *) ADDI 0w14 (* add add addi *) | ADDIS 0w15 (* add-shifted - addis *) | SUBFIC 0w8 (* subtract from subf subfic *) | MULLI 0w7 (* multiply mullw mulli *) | ANDI_Rc "andi." 0w28 (* and and andi *) | ANDIS_Rc "andis." 0w29(* and-shifted - andis *) | ORI 0w24 (* or or ori *) | ORIS 0w25 (* or-shifted - ori *) | XORI 0w26 (* xor xor xori *) | XORIS 0w27 (* xor-shifted - xoris *) (* | SLWI (* !!! *) (* shift left word slw rlwinm *) | SLDI (* !!! *) (* shift left double word sld rldinm *) | SRWI (* !!! *) (* shift right word srw rlwinm *) | SRDI (* !!! *) (* shift right double word srd rldinm *) *) | SRAWI (* shift right algebric word sraw srawi *) | SRADI (* shift right algebraic dword srad sradi *) (* !!! means that these are pseudo ops! *) datatype rotate! = (* opcd *) RLWNM (* rotate left word AND mask rlwnm rlwinm *) | RLDCL | RLDCR datatype rotatei! = RLWINM (* rotate left word AND mask rlwnm rlwinm *) | RLWIMI | RLDICL | RLDICR | RLDIC | RLDIMI datatype ccarith! = (* page 47-49 *) (* xo *) CRAND 0w257 (* cond. reg. AND *) | CROR 0w449 (* cond. reg. OR *) | CRXOR 0w193 (* cond. reg. XOR *) | CRNAND 0w225 (* cond. reg. NAND *) | CRNOR 0w33 (* cond. reg. NOR *) | CREQV 0w289 (* cond. reg. EQV *) | CRANDC 0w129 (* cond. reg. AND with complement *) | CRORC 0w417 (* cond. reg. OR with complement *) (* bits in condition code *) datatype bit! = LT "lt" | GT "gt" | EQ "eq" | SO "so" (* cr0 *) | FL "lt" | FG "gt" | FE "eq" | FU "un" (* cr1 *) (* Lal: as far as I can tell there don't seem to be mnemonics * for these, however using lt, gt, eq, so should fool * the assembler into looking at the right bits in the * cc field. Of course the bf field had better be cr1. *) | FX "lt" | FEX "gt" | VX "eq" | OX "so" (* bits in integer exception register *) datatype xerbit = SO64 (* summary overflow 64 *) | OV64 (* overflow 64 *) | CA64 (* carry 64 *) | SO32 (* summary overflow 32 bits *) | OV32 (* overflow 32 bits *) | CA32 (* carry 32 bits *) type cr_bit = $CC * bit end (* Instruction *) (* * The following describes the encoding of the instructions. *) instruction formats 32 bits (* primitives *) x_form{opcd:6,rt:5,ra:5,rb:5,xo:10,rc:bool 1} | xl_form{opcd:6,bt:5,ba:5,bb:5,xo:10,lk:bool 1} | m_form{opcd:6,rs:5,ra:5,rb:5,mb:5,me:5,rc:bool 1} | a_form{opcd:6,frt:5,fra:5,frb:5,frc:5,xo:5,rc:bool 1} (* integer loads *) | loadx{opcd:6=31,rt:GP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0} | loadd{opcd:6,rt:GP 5,ra:GP 5,d:operand signed 16} | loadde{opcd:6,rt:GP 5,ra:GP 5,de:operand signed 12,xop:4} | load{ld,rt,ra,d} = (case (d,ld) of (I.RegOp rb,I.LBZ) => loadx{rt,ra,rb,xop=0w87} (* lbzx *) | (I.RegOp rb,I.LBZE) => loadx{rt,ra,rb,xop=0w95} (* lbzxe *) | (I.RegOp rb,I.LHZ) => loadx{rt,ra,rb,xop=0w279} (* lhzx *) | (I.RegOp rb,I.LHZE) => loadx{rt,ra,rb,xop=0w287} (* lhzxe *) | (I.RegOp rb,I.LHA) => loadx{rt,ra,rb,xop=0w343} (* lhax *) | (I.RegOp rb,I.LHAE) => loadx{rt,ra,rb,xop=0w351} (* lhaxe *) | (I.RegOp rb,I.LWZ) => loadx{rt,ra,rb,xop=0w23} (* lwzx *) | (I.RegOp rb,I.LWZE) => loadx{rt,ra,rb,xop=0w31} (* lwzxe *) | (I.RegOp rb,I.LDE) => loadx{rt,ra,rb,xop=0w799} (* ldxe *) | (d,I.LBZ) => loadd{opcd=0w34,rt,ra,d} | (de,I.LBZE) => loadde{opcd=0w58,rt,ra,de,xop=0w0} | (d,I.LHZ) => loadd{opcd=0w40,rt,ra,d} | (de,I.LHZE) => loadde{opcd=0w58,rt,ra,de,xop=0w2} | (d,I.LHA) => loadd{opcd=0w42,rt,ra,d} | (de,I.LHAE) => loadde{opcd=0w58,rt,ra,de,xop=0w4} | (d,I.LWZ) => loadd{opcd=0w32,rt,ra,d} | (de,I.LWZE) => loadde{opcd=0w58,rt,ra,de,xop=0w6} | (de,I.LDE) => loadde{opcd=0w62,rt,ra,de,xop=0w0} ) (* floating point loads *) | floadx{opcd:6=31,ft:FP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0} | floadd{opcd:6,ft:FP 5,ra:GP 5,d:operand signed 16} | floadde{opcd:6,ft:FP 5,ra:GP 5,de:operand signed 12,xop:4} | fload{ld,ft,ra,d} = (case (d,ld) of (I.RegOp rb,I.LFS) => floadx{ft,ra,rb,xop=0w535} | (I.RegOp rb,I.LFSE) => floadx{ft,ra,rb,xop=0w543} | (I.RegOp rb,I.LFD) => floadx{ft,ra,rb,xop=0w599} | (I.RegOp rb,I.LFDE) => floadx{ft,ra,rb,xop=0w607} | (d,I.LFS) => floadd{ft,ra,d,opcd=0w48} | (de,I.LFSE) => floadde{ft,ra,de,opcd=0w62,xop=0w4} | (d,I.LFD) => floadd{ft,ra,d,opcd=0w50} | (de,I.LFDE) => floadde{ft,ra,de,opcd=0w62,xop=0w6} ) (* integer stores *) | storex{opcd:6=31,rs:GP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0} | stored{opcd:6,rs:GP 5,ra:GP 5,d:operand signed 16} | storede{opcd:6,rs:GP 5,ra:GP 5,de:operand signed 12,xop:4} | store{st,rs,ra,d} = (case (d,st) of (I.RegOp rb,I.STB) => storex{rs,ra,rb,xop=0w215} | (I.RegOp rb,I.STBE) => storex{rs,ra,rb,xop=0w223} | (I.RegOp rb,I.STH) => storex{rs,ra,rb,xop=0w407} | (I.RegOp rb,I.STHE) => storex{rs,ra,rb,xop=0w415} | (I.RegOp rb,I.STW) => storex{rs,ra,rb,xop=0w151} | (I.RegOp rb,I.STWE) => storex{rs,ra,rb,xop=0w159} | (I.RegOp rb,I.STDE) => storex{rs,ra,rb,xop=0w927} | (d,I.STB) => stored{rs,ra,d,opcd=0w38} | (de,I.STBE) => storede{rs,ra,de,opcd=0w58,xop=0w8} | (d,I.STH) => stored{rs,ra,d,opcd=0w44} | (de,I.STHE) => storede{rs,ra,de,opcd=0w58,xop=0w10} | (d,I.STW) => stored{rs,ra,d,opcd=0w36} | (de,I.STWE) => storede{rs,ra,de,opcd=0w58,xop=0w14} | (de,I.STDE) => storede{rs,ra,de,opcd=0w62,xop=0w8} ) (* floating point stores *) | fstorex{opcd:6=31,fs:FP 5,ra:GP 5,rb:GP 5,xop:10,rc:1=0} | fstored{opcd:6,fs:FP 5,ra:GP 5,d:operand signed 16} | fstorede{opcd:6,fs:FP 5,ra:GP 5,de:operand signed 12,xop:4} | fstore{st,fs,ra,d} = (case (d,st) of (I.RegOp rb,I.STFS) => fstorex{fs,ra,rb,xop=0w663} | (I.RegOp rb,I.STFSE) => fstorex{fs,ra,rb,xop=0w671} | (I.RegOp rb,I.STFD) => fstorex{fs,ra,rb,xop=0w727} | (I.RegOp rb,I.STFDE) => fstorex{fs,ra,rb,xop=0w759} | (d,I.STFS) => fstored{fs,ra,d,opcd=0w52} | (de,I.STFSE) => fstorede{fs,ra,de,opcd=0w62,xop=0w12} | (d,I.STFD) => fstored{fs,ra,d,opcd=0w54} | (de,I.STFDE) => fstorede{fs,ra,de,opcd=0w62,xop=0w14} ) (* integer arithmetic *) | unary'{opcd:6=31,ra:GP 5,rt:GP 5,_:5=0,OE:bool 1,oper:unary 9,Rc:bool 1} | unary{ra,rt,oper,OE,Rc} = (case oper of I.NEG => unary'{ra=rt,rt=ra,oper,OE,Rc} (* swapped! *) | _ => unary'{ra,rt,oper,OE,Rc} ) | arith'{opcd:6=31,rt:GP 5,ra:GP 5,rb:GP 5,OE:bool 1,oper:arith 9,Rc:bool 1} | arithi'{oper:arithi 6,rt:GP 5,ra:GP 5,im:operand signed 16} | srawi{opcd:6=31,rs:GP 5,ra:GP 5,sh:operand signed 5,xop:10=824,Rc:1=0} | sradi'{opcd:6=31,rs:GP 5,ra:GP 5,sh:5,xop:9=0w413,sh2:1,Rc:1=0} | sradi{rs,ra,sh:operand signed 6} = sradi'{rs=rs,ra=ra,sh=(sh at [0..4]),sh2=sh at [5]} | arith{oper,rt,ra,rb,OE,Rc} = (case oper of (I.ADD | I.SUBF | I.MULLW | I.MULLD | I.MULHW | I.MULHWU | I.DIVW | I.DIVD | I.DIVWU | I.DIVDU) => arith'{oper,rt,ra,rb,OE,Rc} (* For some unknown reasons, the encoding of rt and ra * are swapped! *) | _ => arith'{oper,rt=ra,ra=rt,rb,OE,Rc} ) | arithi{oper,rt,ra,im} = (case oper of (I.ADDI | I.ADDIS | I.SUBFIC | I.MULLI) => arithi'{oper,rt,ra,im} | I.SRAWI => srawi{rs=ra,ra=rt,sh=im} | I.SRADI => sradi{rs=ra,ra=rt,sh=im} (* For some unknown reasons, the encoding of rt and ra * are swapped! *) | _ => arithi'{oper,rt=ra,ra=rt,im} ) (* integer compare *) | Cmpl{opcd:6=31,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,rb:GP 5,xo:10=32,_:1=0} | Cmpli{opcd:6=10,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,ui:operand signed 16} | Cmp{opcd:6=31,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,rb:GP 5,xo:10=0,_:1=0} | Cmpi{opcd:6=11,bf:CC 3,_:1=0,l:bool 1,ra:GP 5,si:operand signed 16} | compare{cmp,bf,l,ra,rb} = (case (cmp,rb) of (I.CMP,I.RegOp rb) => Cmp{bf,l,ra,rb} | (I.CMPL,I.RegOp rb) => Cmpl{bf,l,ra,rb} | (I.CMP,si) => Cmpi{bf,l,ra,si} | (I.CMPL,ui) => Cmpli{bf,l,ra,ui} ) (* floating point compare *) | fcmp{opcd:6=63,bf:CC 3,_:2=0,fa:FP 5,fb:FP 5,cmp:fcmp 10,_:1=0} (* floating point unary *) | funary{oper:funary,ft:FP,fb:FP,Rc} = let val (opcd,xo) = oper in case oper of (0wx3f, 0wx16) => (* FSQRT *) a_form{opcd=opcd,frt=ft,fra=0w0,frb=fb,frc=0w0,xo=xo,rc=Rc} | (0wx3b, 0wx16) => (* FSQRTS *) a_form{opcd=opcd,frt=ft,fra=0w0,frb=fb,frc=0w0,xo=xo,rc=Rc} | _ => x_form{opcd=opcd,rt=ft,ra=0w0,rb=fb,xo=xo,rc=Rc} end (* floating point binary *) | farith{oper,ft:FP,fa:FP,fb:FP,Rc} = let val (opcd,xo) = emit_farith oper in case oper of (I.FMUL | I.FMULS) => a_form{opcd=opcd,frt=ft,fra=fa,frb=0w0,frc=fb,xo=xo,rc=Rc} | _ => a_form{opcd=opcd,frt=ft,fra=fa,frb=fb,frc=0w0,xo=xo,rc=Rc} end (* floating point ternary *) | farith3{oper:farith3,ft:FP,fa:FP,fc:FP,fb:FP,Rc} = let val (opcd,xo) = oper in a_form{opcd=opcd,frt=ft,fra=fa,frb=fb,frc=fc,xo=xo,rc=Rc} end | cr_bit{cc} = let val (cr,bit) = cc in (emit_CC cr << 0w2) + itow( case bit of I.LT => 0 | I.GT => 1 | I.EQ => 2 | I.SO => 3 | I.FL => 0 | I.FG => 1 | I.FE => 2 | I.FU => 3 | I.FX => 0 | I.FEX => 1 | I.VX => 2 | I.OX => 3 ) end | ccarith{oper:ccarith,bt,ba,bb} = xl_form{opcd=0w19,bt=cr_bit{cc=bt},ba=cr_bit{cc=ba},bb=cr_bit{cc=bb}, xo=oper,lk=false} (* trap on word *) | twr{opcd:6=31,to:int 5,ra:GP 5,rb:GP 5,xop:10=4,_:1=0} | twi{opcd:6=3,to:int 5,ra:GP 5,si:operand signed 16} | tw{to,ra,si} = (case si of I.RegOp rb => twr{to,ra,rb} | _ => twi{to,ra,si}) (* trap on double word *) | tdr{opcd:6=31,to:int 5,ra:GP 5,rb:GP 5,xop:10=68,_:1=0} | tdi{opcd:6=2,to:int 5,ra:GP 5,si:operand signed 16} | td{to,ra,si} = (case si of I.RegOp rb => tdr{to,ra,rb} | _ => tdi{to,ra,si}) (* move condition field p49 *) | mcrf{opcd:6=19,bf:CC 3,_:2=0,bfa:CC 3,_:18=0} (* move from/to special purpose register p131/132 * the encoding of spr = spr[0..4] || spr[5..9] *) | mtspr'{opcd:6=31,rs:GP 5,spr:10,xop:10=467,_:1=0} | mtspr{rs,spr:SPR} = mtspr'{rs,spr=((spr at [0..4]) << 0w5) + (spr at [5..9])} | mfspr'{opcd:6=31,rt:GP 5,spr:10,xop:10=339,_:1=0} | mfspr{rt,spr:SPR} = mfspr'{rt,spr=((spr at [0..4]) << 0w5) + (spr at [5..9])} (* Branch p41 *) | b{opcd:6=18,li:signed 24,aa:bool 1,lk:bool 1} | be{opcd:6=22,li:signed 24,aa:bool 1,lk:bool 1} (* Branch conditional p42 *) | bc{opcd:6=16,bo:bo 5,bi:5,bd:signed 14,aa:bool 1,lk:bool 1} | bce{opcd:6=16,bo:bo 5,bi:5,bd:signed 14,aa:bool 1,lk:bool 1} (* Branch conditional to link register *) | bclr{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=16,lk:bool 1} | bclre{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=17,lk:bool 1} (* Branch conditional to count register *) | bcctr{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=528,lk:bool 1} | bcctre{opcd:6=19,bo:bo 5,bi:5,_:5=0,xop:10=529,lk:bool 1} (* Rotate *) | rlwnm{oper:6=23,rs:GP 5,ra:GP 5,sh:GP 5,mb:int 5,me:int 5,Rc:1=0} | rlwinm{oper:6=21,rs:GP 5,ra:GP 5,sh:5,mb:int 5,me:int 5,Rc:1=0} | rldcl{oper:6=30,rs:GP 5,ra:GP 5,sh:GP 5,mb:int 5,_:5=8,Rc:1=0} | rldicl{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=0,sh2:1,Rc:1=0} | rldcr{oper:6=30,rs:GP 5,ra:GP 5,sh:GP 5,mb:int 5,_:5=9,Rc:1=0} | rldicr{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=1,sh2:1,Rc:1=0} | rldic{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=2,sh2:1,Rc:1=0} | rlwimi{oper:6=20,rs:GP 5,ra:GP 5,sh:5,mb:int 5,me:int 5,Rc:1=0} | rldimi{oper:6=30,rs:GP 5,ra:GP 5,sh:5,mb:int 5,_:4=3,sh2:1,Rc:1=0} | rotate{oper,ra,rs,sh,mb,me} = (case (oper,me) of (I.RLWNM,SOME me) => rlwnm{ra,rs,sh,mb,me} | (I.RLDCL,_) => rldcl{ra,rs,sh,mb} | (I.RLDCR,_) => rldcr{ra,rs,sh,mb} ) | rotatei{oper,ra,rs,sh:operand,mb,me} = (case (oper,me) of (I.RLWINM,SOME me) => rlwinm{ra,rs,sh,mb,me} | (I.RLWIMI,SOME me) => rlwimi{ra,rs,sh=sh,mb,me} | (I.RLDICL,_) => rldicl{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb} | (I.RLDICR,_) => rldicr{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb} | (I.RLDIC,_) => rldic{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb} | (I.RLDIMI,_) => rldimi{ra,rs,sh=sh at [0..4],sh2=sh at [5],mb} ) (* * Some helper functions for generating machine code. * These are copied from Lal's code. *) structure MC = struct fun relative(I.LabelOp lexp) = itow(MLTreeEval.valueOf lexp - !loc) ~>> 0w2 | relative _ = error "relative" end (* * Reservation tables and pipeline definitions for scheduling *) (* Function units *) resource issue and mem and alu and falu and fmul and fdiv and branch (* Different implementations of cpus *) cpu default 2 [2 issue, 2 mem, 1 alu] (* 2 issue machine *) (* Definitions of various reservation tables *) pipeline NOP _ = [issue] and ARITH _ = [issue^^alu] and LOAD _ = [issue^^mem] and STORE _ = [issue^^mem,mem,mem] and FARITH _ = [issue^^falu] and FMUL _ = [issue^^fmul,fmul] and FDIV _ = [issue^^fdiv,fdiv*50] and BRANCH _ = [issue^^branch] (* * Some helper functions for generating assembly code. *) structure Assembly = struct (* Add the x suffix if necessary; this is a stupid hack *) fun emitx(s,I.RegOp _) = if String.sub(s,size s-1) = #"e" then (emit(String.substring(s,0,size s-1)); emit "xe") else (emit(s); emit "x") | emitx(s,_) = emit s fun eOERc{OE=false,Rc=false} = () | eOERc{OE=false,Rc=true} = emit "." | eOERc{OE=true,Rc=false} = emit "o" | eOERc{OE=true,Rc=true} = emit "o." fun eRc false = "" | eRc true = "." fun cr_bit(cr,bit) = 4 * (CellsBasis.physicalRegisterNum cr) + (case bit of I.LT => 0 | I.GT => 1 | I.EQ => 2 | I.SO => 3 | I.FL => 0 | I.FG => 1 | I.FE => 2 | I.FU => 3 | I.FX => 0 | I.FEX => 1 | I.VX => 2 | I.OX => 3 ) fun eCRbit x = emit(Int.toString(cr_bit x)) fun eLK true = emit "l" | eLK false = () fun eI (I.RegOp _) = () | eI _ = emit "i" fun eBI(bo, bf, bit) = case (bo, CellsBasis.physicalRegisterNum bf) of (I.ALWAYS, _) => () | (I.COUNTER{cond=NONE, ...}, _) => () | (_,0) => emit(asm_bit bit) | (_,n) => emit("4*cr" ^ Int.toString n ^ "+" ^ asm_bit bit) fun emit_bo bo = emit(case bo of I.TRUE => "t" | I.FALSE => "f" | I.ALWAYS => "" | I.COUNTER{eqZero, cond=NONE} => if eqZero then "dz" else "dnz" | I.COUNTER{eqZero, cond=SOME cc} => (if eqZero then "dz" else "dnz") ^ (if cc then "t" else "f") (*esac*)) fun eME(SOME me) = (emit ", "; emit_int me) | eME(NONE) = () fun addr(ra,I.RegOp rb) = (emitCell ra; emit ", "; emitCell rb) | addr(ra,d) = (emit_operand d; emit "("; emitCell ra; emit ")") end (* Assembly *) instruction L of {ld:load, rt: $GP, ra: $GP, d:operand, mem:Region.region} ``<emitx(asm_load ld,d)>\t<rt>, <addr(ra,d)><mem>'' load{ld,rt,ra,d} | LF of {ld:fload, ft: $FP, ra: $GP, d:operand, mem:Region.region} ``<emitx(asm_fload ld,d)>\t<ft>, <addr(ra,d)><mem>'' fload{ld,ft,ra,d} | ST of {st:store, rs: $GP, ra: $GP, d:operand, mem:Region.region} ``<emitx(asm_store st,d)>\t<rs>, <addr(ra,d)><mem>'' store{st,rs,ra,d} | STF of {st:fstore, fs: $FP, ra: $GP, d:operand, mem:Region.region} ``<emitx(asm_fstore st,d)>\t<fs>, <addr(ra,d)><mem>'' fstore{st,fs,ra,d} | UNARY of {oper:unary, rt: $GP, ra: $GP, Rc:bool, OE:bool} ``<oper><eOERc{Rc,OE}>\t<rt>, <ra>'' unary{oper,rt,ra,OE,Rc} | ARITH of {oper:arith, rt: $GP, ra: $GP, rb: $GP, Rc:bool, OE:bool} ``<oper><eOERc{Rc,OE}>\t<rt>, <ra>, <rb>'' arith{oper,rt,ra,rb,OE,Rc} | ARITHI of {oper:arithi, rt: $GP, ra: $GP, im:operand} ``<oper>\t<rt>, <ra>, <im>'' arithi{oper,rt,ra,im} | ROTATE of {oper:rotate, ra: $GP, rs: $GP, sh: $GP, mb:int, me:int option} ``<oper>\t<ra>, <rs>, <sh>, <mb><eME me>'' rotate{oper,ra,rs,sh,mb,me} | ROTATEI of {oper:rotatei, ra: $GP, rs: $GP, sh:operand, mb:int, me:int option} ``<oper>\t<ra>, <rs>, <sh>, <mb><eME me>'' rotatei{oper,ra,rs,sh,mb,me} | COMPARE of {cmp:cmp, l:bool, bf: $CC, ra: $GP, rb:operand} ``<cmp><eI rb>\t<bf>, <emit(if l then "1" else "0")>, <ra>, <rb>'' compare{cmp,bf,l,ra,rb} | FCOMPARE of {cmp:fcmp, bf: $CC, fa: $FP, fb: $FP} ``<cmp>\t<bf>, <fa>, <fb>'' fcmp{cmp,bf,fa,fb} | FUNARY of {oper:funary, ft: $FP, fb: $FP, Rc:bool} ``<oper><eRc Rc>\t<ft>, <fb>'' funary{oper,ft,fb,Rc} | FARITH of {oper:farith, ft: $FP, fa: $FP, fb: $FP, Rc:bool} ``<oper><eRc Rc>\t<ft>, <fa>, <fb>'' farith{oper,ft,fa,fb,Rc} | FARITH3 of {oper:farith3, ft: $FP, fa: $FP, fb: $FP, fc: $FP, Rc:bool} ``<oper><eRc Rc>\t<ft>, <fa>, <fb>, <fc>'' farith3{oper,ft,fa,fb,fc,Rc} | CCARITH of {oper:ccarith, bt:cr_bit, ba:cr_bit, bb:cr_bit} ``<oper>\t<eCRbit bt>, <eCRbit ba>, <eCRbit bb>'' ccarith{oper,bt,ba,bb} | MCRF of {bf: $CC, bfa: $CC} (* move condition register field p49 *) ``mcrf\t<bf>, <bfa>'' mcrf{bf,bfa} (* move to special register p131 *) | MTSPR of {rs: $GP, spr: $SPR} ``mt<spr>\t<rs>'' mtspr{rs,spr} (* move from special register p132 *) | MFSPR of {rt: $GP, spr: $SPR} ``mf<spr>\t<rt>'' mfspr{rt,spr} (* Trapping word *) | TW of {to:int, ra: $GP, si:operand} ``tw<eI si>\t<to>, <ra>, <si>'' tw{to,ra,si} (* Trapping double word *) | TD of {to:int, ra: $GP, si:operand} ``td<eI si>\t<to>, <ra>, <si>'' td{to,ra,si} (* Control Instructions - AA is always assumed to be 0 *) | BC of {bo:bo, bf: $CC, bit:bit, addr:operand, LK:bool, fall:operand} ``b<bo><eLK LK>\t<eBI(bo,bf,bit)>, <addr>'' bc{bo,bi=cr_bit{cc=(bf,bit)},bd=relative addr,aa=false,lk=LK} | BCLR of {bo:bo, bf: $CC, bit:bit, LK:bool, labels:Label.label list} ``b<bo>lr<eLK LK>\t<eBI(bo,bf,bit)>'' bclr{bo,bi=cr_bit{cc=(bf,bit)},lk=LK} | B of {addr:operand, LK:bool} ``b<eLK LK>\t<addr>'' b{li=relative addr,aa=false,lk=LK} (* CALL = BCLR {bo=ALWAYS, bf=0, bit=0, LK=true, labels=[] *) | CALL of {def:C.cellset, use:C.cellset, cutsTo: Label.label list, mem: Region.region} ``blrl<mem><emit_defs(def)><emit_uses(use)><emit_cutsTo cutsTo>'' bclr{bo=I.ALWAYS,bi=0w0,lk=true} | SOURCE of {} asm: ``source'' mc: () | SINK of {} asm: ``sink'' mc: () | PHI of {} asm: ``phi'' mc: () structure SSA = struct fun operand(ty, I.RegOp r) = T.REG(32, r) | operand(ty, I.ImmedOp i) = T.LI i (*| operand(ty, I.LabelOp le) = T.LABEL le*) end end
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |