SCM Repository
View of /sml/trunk/src/compiler/FLINT/opt/split.sml
Parent Directory
|
Revision Log
Revision 217 -
(download)
(annotate)
Sun Feb 28 23:41:30 1999 UTC (21 years, 11 months ago) by monnier
File size: 9713 byte(s)
Sun Feb 28 23:41:30 1999 UTC (21 years, 11 months ago) by monnier
File size: 9713 byte(s)
* opt/fcontract.sml (fcEta): do the known->unknown eta-reduce if the `known' function is not locally defined (in which case the known/unknown distinction is pointless anyway). (wrap): don't forget to junk dead inlinable functions.
(* copyright 1999 YALE FLINT project *) (* monnier@cs.yale.edu *) signature FSPLIT = sig type flint = FLINT.prog val split: flint -> flint * flint option end structure FSplit :> FSPLIT = struct local structure F = FLINT structure S = IntSetF structure M = IntmapF structure O = Option structure OU = OptUtils structure FU = FlintUtil structure LT = LtyExtern structure PO = PrimOp structure PP = PPFlint in val say = Control.Print.say fun bug msg = ErrorMsg.impossible ("FSplit: "^msg) fun buglexp (msg,le) = (say "\n"; PP.printLexp le; say " "; bug msg) fun bugval (msg,v) = (say "\n"; PP.printSval v; say " "; bug msg) fun assert p = if p then () else bug ("assertion failed") type flint = F.prog val mklv = LambdaVar.mkLvar val cplv = LambdaVar.dupLvar fun addv (s,F.VAR lv) = S.add(lv, s) | addv (s,_) = s fun addvs (s,vs) = foldl (fn (v,s) => addv(s, v)) s vs fun rmvs (s,lvs) = foldl S.rmv s lvs fun split (fdec as (fk,f,args,body)) = let val {getLty,addLty,...} = Recover.recover (fdec, false) (* sexp: env -> lexp -> (leE, leI, fvI, leRet) * - env: IntSetF.set current environment * - lexp: lexp expression to split * - leRet: lexp the core return expression of lexp * - leE: lexp -> lexp recursively split lexp: leE leRet == lexp * - leI: lexp option inlinable part of lexp (if any) * - fvI: IntSetF.set free variables of leI: FU.freevars leI == fvI * * sexp splits the lexp into an expansive part and an inlinable part. * The inlinable part is guaranteed to be side-effect free. * The expansive part doesn't bother to eliminate unused copies of * elements copied to the inlinable part. * If the inlinable part cannot be constructed, leI is set to F.RET[]. * This implies that fvI == S.empty, which in turn prevents us from * mistakenly adding anything to leI. *) fun sexp env lexp = let fun funeffect f = true (* FIXME *) (* non-side effecting binds are copied to leI if exported *) fun let1 (le,lewrap,lv,vs,effect) = let val (leE,leI,fvI,leRet) = sexp (S.add(lv, env)) le val leE = lewrap o leE in if effect orelse not (S.member fvI lv) then (leE, leI, fvI, leRet) else (leE, lewrap leI, addvs(S.rmv(lv, fvI), vs), leRet) end in case lexp (* we can completely move both RET and TAPP to the I part *) of F.RECORD (rk,vs,lv,le as F.RET [F.VAR lv']) => if lv' = lv then (fn e => e, lexp, addvs(S.empty, vs), lexp) else (fn e => e, le, S.singleton lv', le) | F.RET vs => (fn e => e, lexp, addvs(S.empty, vs), lexp) | F.TAPP (F.VAR tf,tycs) => (fn e => e, lexp, S.singleton tf, lexp) (* recursive splittable lexps *) | F.FIX (fdecs,le) => sfix env (fdecs, le) | F.TFN (tfdec,le) => stfn env (tfdec, le) (* binding-lexps *) | F.CON (dc,tycs,v,lv,le) => let1(le, fn e => F.CON(dc, tycs, v, lv, e), lv, [v], false) | F.RECORD (rk,vs,lv,le) => let1(le, fn e => F.RECORD(rk, vs, lv, e), lv, vs, false) | F.SELECT (v,i,lv,le) => let1(le, fn e => F.SELECT(v, i, lv, e), lv, [v], false) | F.PRIMOP (po,vs,lv,le) => let1(le, fn e => F.PRIMOP(po, vs, lv, e), lv, vs, PO.effect(#2 po)) (* IMPROVEME: lvs should not be restricted to [lv] *) | F.LET(lvs as [lv],body as F.TAPP (v,tycs),le) => let1(le, fn e => F.LET(lvs, body, e), lv, [v], false) | F.LET (lvs as [lv],body as F.APP (v,vs),le) => let1(le, fn e => F.LET(lvs, body, e), lv, v::vs, true) | F.SWITCH (v,ac,[(dc as F.DATAcon(_,_,lv),le)],NONE) => let1(le, fn e => F.SWITCH(v, ac, [(dc, e)], NONE), lv, [v], false) | F.LET (lvs,body,le) => let val (leE,leI,fvI,leRet) = sexp (S.union(S.make lvs, env)) le in (fn e => F.LET(lvs, body, leE e), leI, fvI, leRet) end | F.HANDLE (le,v) => let val (leE,leI,fvI,leRet) = sexp env le in (fn e => F.HANDLE(leE e, v), leI, fvI, leRet) end (* other non-binding lexps result in unsplittable functions *) | F.APP (F.VAR f,args) => if funeffect f then (fn e => e, F.RET[], S.empty, lexp) else (fn e => e, lexp, addvs(S.singleton f, args), lexp) | (F.APP _ | F.TAPP _) => bug "strange (T)APP" | (F.SWITCH _ | F.RAISE _ | F.BRANCH _) => (fn e => e, F.RET[], S.empty, lexp) end (* Functions definitions fall into the following categories: * - inlinable: if exported, copy to leI * - (mutually) recursive: don't bother * - non-inlinable non-recursive: split recursively *) and sfix env (fdecs,le) = let val nenv = S.union(S.make(map #2 fdecs), env) val (leE,leI,fvI,leRet) = sexp nenv le val nleE = fn e => F.FIX(fdecs, leE e) in case fdecs of [({inline=(F.IH_ALWAYS | F.IH_MAYBE _),...},f,args,body)] => if not (S.member fvI f) then (nleE, leI, fvI, leRet) else (nleE, F.FIX(fdecs, leI), rmvs(S.union(fvI, FU.freevars body), f::(map #1 args)), leRet) | [fdec as (fk as {cconv=F.CC_FCT,...},_,_,_)] => sfdec env (leE,leI,fvI,leRet) fdec | _ => (nleE, leI, fvI, leRet) end and sfdec env (leE,leI,fvI,leRet) (fk,f,args,body) = let val benv = S.union(S.make(map #1 args), env) val (bodyE,bodyI,fvbI,bodyRet) = sexp benv body in case bodyI of F.RET[] => (fn e => F.FIX([(fk, f, args, bodyE bodyRet)], e), leI, fvI, leRet) | _ => let val fvbIs = S.members(S.diff(fvbI, benv)) val (nfk,fkE) = OU.fk_wrap(fk, NONE) (* fdecE *) val fE = cplv f val fErets = (map F.VAR fvbIs) val bodyE = bodyE(F.RET fErets) (* val tmp = mklv() val bodyE = bodyE(F.RECORD(F.RK_STRUCT, map F.VAR fvbIs, tmp, F.RET[F.VAR tmp])) *) val fdecE = (fkE, fE, args, bodyE) val fElty = LT.ltc_fct(map #2 args, map getLty fErets) val _ = addLty(fE, fElty) (* fdecI *) val fkI = {inline=F.IH_ALWAYS, cconv=F.CC_FCT, known=true, isrec=NONE} val argsI = (map (fn lv => (lv, getLty(F.VAR lv))) fvbIs) @ args (* val argI = mklv() val argsI = (argI, LT.ltc_str(map (getLty o F.VAR) fvbIs))::args val (_,bodyI) = foldl (fn (lv,(n,le)) => (n+1, F.SELECT(F.VAR argI, n, lv, le))) (0, bodyI) fvbIs *) val fdecI as (_,fI,_,_) = FU.copyfdec(fkI,f,argsI,bodyI) (* nfdec *) val nargs = map (fn (v,t) => (cplv v, t)) args val argsv = map (fn (v,t) => F.VAR v) nargs val nbody = let val lvs = map cplv fvbIs in F.LET(lvs, F.APP(F.VAR fE, argsv), F.APP(F.VAR fI, (map F.VAR lvs)@argsv)) end (* let val lv = mklv() in F.LET([lv], F.APP(F.VAR fE, argsv), F.APP(F.VAR fI, (F.VAR lv)::argsv)) end *) val nfdec = (nfk, f, nargs, nbody) (* and now, for the whole F.FIX *) fun nleE e = F.FIX([fdecE], F.FIX([fdecI], F.FIX([nfdec], leE e))) in if not(S.member fvI f) then (nleE, leI, fvI, leRet) else (nleE, F.FIX([fdecI], F.FIX([nfdec], leI)), S.add(fE, S.union(S.rmv(f, fvI), S.inter(env, fvbI))), leRet) end end (* TFNs are kinda like FIX except there's no recursion *) and stfn env (tfdec as (tf,args,body),le) = let val nenv = S.add(tf, env) val (leE,leI,fvI,leRet) = sexp nenv le val (bodyE,bodyI,fvbI,bodyRet) = sexp nenv body in case (bodyI, S.members(S.diff(fvbI, env))) of ((F.RET _ | F.RECORD(_,_,_,F.RET _)),_) => (* split failed *) (fn e => F.TFN((tf, args, bodyE bodyRet), leE e), leI, fvI, leRet) | (_,[]) => (* everything was split out *) let val ntfdec = (tf, args, bodyE bodyRet) in (fn e => F.TFN(ntfdec, leE e), F.TFN(ntfdec, leI), S.rmv(tf, S.union(fvI, fvbI)), leRet) end | (_,fvbIs) => let (* tfdecE *) val tfE = cplv tf val tfEvs = map F.VAR fvbIs val bodyE = bodyE(F.RET tfEvs) val tfElty = LT.lt_nvpoly(args, map getLty tfEvs) val _ = addLty(tfE, tfElty) (* tfdecI *) val argsI = map (fn (v,k) => (cplv v, k)) args val tmap = ListPair.map (fn (a1,a2) => (#1 a1, LT.tcc_nvar(#1 a2))) (args, argsI) val bodyI = FU.copy tmap M.empty (F.LET(fvbIs, F.TAPP(F.VAR tfE, map #2 tmap), bodyI)) (* F.TFN *) fun nleE e = F.TFN((tfE, args, bodyE), F.TFN((tf, argsI, bodyI), leE e)) in if not(S.member fvI tf) then (nleE, leI, fvI, leRet) else (nleE, F.TFN((tf, argsI, bodyI), leI), S.add(tfE, S.union(S.rmv(tf, fvI), S.inter(env, fvbI))), leRet) end end (* here, we use B-decomposition, so the args should not be * considered as being in scope *) val (bodyE,bodyI,fvbI,bodyRet) = sexp S.empty body in case (bodyI, bodyRet) of (F.RET _,_) => ((fk, f, args, bodyE bodyRet), NONE) | (_,F.RECORD (rk,vs,lv,F.RET[lv'])) => let val fvbIs = S.members fvbI (* fdecE *) val bodyE = bodyE(F.RECORD(rk, vs@(map F.VAR fvbIs), lv, F.RET[lv'])) val fdecE as (_,fE,_,_) = (fk, cplv f, args, bodyE) (* fdecI *) val argI = mklv() val argLtys = (map getLty vs) @ (map (getLty o F.VAR) fvbIs) val argsI = [(argI, LT.ltc_str argLtys)] val (_,bodyI) = foldl (fn (lv,(n,le)) => (n+1, F.SELECT(F.VAR argI, n, lv, le))) (length vs, bodyI) fvbIs val fdecI as (_,fI,_,_) = FU.copyfdec (fk, f, argsI, bodyI) val nargs = map (fn (v,t) => (cplv v, t)) args in (fdecE, SOME fdecI) (* ((fk, f, nargs, F.FIX([fdecE], F.FIX([fdecI], F.LET([argI], F.APP(F.VAR fE, map (F.VAR o #1) nargs), F.APP(F.VAR fI, [F.VAR argI]))))), NONE) *) end | _ => (PPFlint.printLexp bodyRet; bug "couldn't find the returned record") end end end
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |