Home My Page Projects Code Snippets Project Openings SML/NJ
 Summary Activity Forums Tracker Lists Tasks Docs Surveys News SCM Files

# SCM Repository

[smlnj] View of /sml/trunk/src/compiler/MiscUtil/bignums/realconst.sml
 [smlnj] / sml / trunk / src / compiler / MiscUtil / bignums / realconst.sml # View of /sml/trunk/src/compiler/MiscUtil/bignums/realconst.sml

Wed Mar 11 21:00:04 1998 UTC (22 years, 6 months ago) by monnier
File size: 7717 byte(s)
```Initial revision
```
```(* Copyright 1989 by AT&T Bell Laboratories *)
(*
RealConst: generate ML real constants.
RealConst uses long multiplication to find the correct bit pattern for
the real.  This method is slow, but accurate, and works to any precision,
which means that floats can be cross-compiled correctly.

The function emitreal should take (int * bool array * int) which represents
a real value as (sign * fraction * exponent).
The sign is 0 if the real is positive, 1 if negative.
The fraction is a boolean array representing the bits; note that the most
significant bit is in position 0.
The exponent is the binary exponent of the normalized fraction.
"Normalized" here means a number between 0 and 1.

The algorithm works inefficient on forms like 10000000.0; forms like 1E7 (with
no bogus zeros) are better.  Also inefficient on forms like 0E23 or 1E~212.
*)

signature PRIMREAL = sig
val significant : int
val minexp : int
val maxexp : int
val transreal : (int * (int*int->int) * int) -> string
end

signature REALCONST = sig
val realconst : string -> string
end

functor RealConst(P : PRIMREAL) : REALCONST =
struct

open P

(* Use more than the required precision, then round at the end.
This criterion works well enough for the 53 bits required by
Vax G format and IEEE double format, but has not been tested with other
values of significant. *)

fun log2 0 = 1 | log2 i = 1+log2(i div 2)
val precision = significant + log2(maxexp-minexp) + 3

(* A float is a WHOLE "fraction" and an exponent base TWO. *)
type float = {frac : Bigint.bigint, exp : int}

val bigint = Bigint.bigint
val plus = Bigint.+
val times = Bigint.*
infix plus times

(* Take a bigint and return a function that will represent the
fraction.  The function is called with two integers (start,width), and returns
an integer represented by the bits from start to start+width-1.
The high (1/2) bit is in position 0.  Assumes that
the bigint is positive.  This will work if the bigint is smaller than
the array or vice versa;  however, the number will be truncated, not
rounded. *)
exception Bits
fun makebits frac (start,width) =
let val s = Bigint.size frac
fun onebit b = Bigint.getbit(frac,s-1-b)
fun b true = 1
| b false = 0
fun f 0 = b (onebit start)
| f i = b (onebit(start+i)) + 2 * f(i-1)
in if start < 0 orelse width < 0
then raise Bits
else f (width-1)
end

(* round a float to n significant digits *)
local val one = bigint 1 in
fun round (float as {frac=f,exp=e},n) =
let val shift = Bigint.size f + 1 - n
in
if shift <= 0 then float
else {frac = if Bigint.getbit(f,shift-1)
then Bigint.>>(f, shift) plus one
else Bigint.>>(f, shift),
exp = e + shift}
end
end

(* maketenth:  create the float of one tenth, to any number of significant
digits, with no rounding on the last digit. *)
local val zero = bigint 0 and one = bigint 1 and two = bigint 2 in
fun maketenth 1 = {frac=one,exp= ~4}
| maketenth n =
let val {frac,exp} = maketenth(n-1)
val rec tenthbit = fn 0 => zero | 1 => one
| 2 => one | 3 => zero | n => tenthbit(n mod 4)
val f = (frac times two) plus tenthbit n
val e = exp - 1
in
{frac=f,exp=e}
end
end

(* float values ten and one tenth, to the correct precision. *)
val ten = {frac=bigint 5, exp = 1}
val tenth = round(maketenth(precision+1),precision)

(* Multiplies two floats together to the correct precision *)
fun mult {frac=f1,exp=e1} {frac=f2,exp=e2} =
let val f = f1 times f2
val e : int = e1 + e2
(* shouldn't need the type constraint, our comp bug *)
in
round({frac=f,exp=e},precision)
end

(* Create a dynamic array of powers of ten *)
structure DFA = Dynamic(
struct open Array
type float = {frac : Bigint.bigint, exp : int}
type elem = unit->float
type array = elem array
type vector = elem vector
end)

local open Array List DFA
infix 9 sub
exception Unknown
fun makelem e = (fn () => e)
val one = {frac=bigint 1,exp=0}
in
val pos10 = array(fn () => raise Unknown)	(* 10^2^n *)
val _ = update(pos10,0,makelem ten)
val neg10 = array(fn () => raise Unknown)	(* 10^~2^n *)
val _ = update(neg10,0,makelem tenth)
fun access(arr,n) = (arr sub n) ()
handle Unknown => let val last = access(arr,n-1)
val new = mult last last
in  update(arr,n,makelem new);
new
end

fun pow10_2 0 = one
| pow10_2 n = if n > 0 then access(pos10,n-1) else access(neg10,~n-1)
fun raisepower(f,0) = f
| raisepower(f,e) =
let val sign = if e<0 then ~1 else 1
fun power(f,p) = mult f (pow10_2(sign*p))
fun raisep(f,0w0,_) = f
| raisep(f,e,p) =
if Word.andb(e, 0w1) = 0w1 then
raisep(power(f,p), Word.>>(e, 0w1), p+1)
else raisep(f, Word.>>(e, 0w1), p+1)
in  raisep(f, Word.fromInt (abs e), 1)
end
end

(* Takes a string list of the form {digit*.[digit*]}, and returns a bigint and
the exponent base 10.  Requires that the list contain a decimal point and
no trailing zeros (useless zeros after the decimal point). *)
local val ten = bigint 10 and zero = bigint 0 in
fun reducefrac f =
let fun getexp nil = 0
| getexp (#"." :: _) = 0
| getexp (_ :: tl) = getexp tl - 1
fun getwhole nil = zero
| getwhole (#"." :: tl) = getwhole tl
| getwhole (#"0" :: tl) = ten times getwhole tl
| getwhole (n::tl) =
bigint(Char.ord n - Char.ord #"0") plus (ten times getwhole tl)
val backwards = rev f
val whole = getwhole backwards
val exp = getexp backwards
in
(whole,exp)
end
end

(* Takes a legal ML float string and returns an (int * bigint * int)
which is the sign, whole "fraction", and power of ten exponent *)
fun getparts s =
let datatype trailing = SIGNIFICANT | TRAILING
(* separate the fraction from the exponent, adding a decimal point if
there is none and eliminating trailing zeros *)
fun separate (nil,s) = (nil,nil,s)
| separate ((#"E" | #"e")::tl,SIGNIFICANT) = ([#"."],tl,SIGNIFICANT)
| separate ((#"E" | #"e")::tl,TRAILING) = (nil,tl,TRAILING)
| separate (#"0"::tl,s) =
let val (r,e,s) = separate(tl,s)
in  case s of TRAILING => (r,e,TRAILING)
| SIGNIFICANT => (#"0"::r,e,SIGNIFICANT)
end
| separate (#"."::tl,_) =
let val (r,e,_) = separate(tl,TRAILING)
in  (#"."::r,e,SIGNIFICANT)
end
| separate (hd::tl,s) =
let val (r,e,_) = separate(tl,s)
in  (hd::r,e,SIGNIFICANT)
end
val (unsigned,sign) = (case explode s
of (#"~"::more) => (more,1)
| other => (other,0)
(* end case *))
val (frac_s,exp_s,_) = separate(unsigned,SIGNIFICANT)
fun atoi strlist =
let	val numlist = map (fn n => Char.ord n - Char.ord #"0") strlist
in  List.foldl (fn (a:int,b) => b*10 + a) 0 numlist
end
val exp10 = (case exp_s of nil => 0
| #"~"::more => ~(atoi more)
| other => atoi other)
handle Overflow => raise BadReal s
val (frac,exp) = reducefrac frac_s
in
(sign,frac,exp10 + exp)
end

fun realconst f =
let val (sign,frac10,exp10) = getparts f
val float = raisepower(round({frac=frac10,exp=0},precision),exp10)
val (newf as {frac,exp}) = round(float,significant+1)
val size = Bigint.size frac
val bits = makebits frac
val exp = exp+size
in transreal(
case size
of 0 => (0,bits,0)
| _ => if exp<minexp orelse exp>maxexp then raise BadReal f
else (sign,bits,exp))
end

end (* functor RealConst *)

(*
* \$Log: realconst.sml,v \$
* Revision 1.2  1997/05/23  15:55:39  jhr
* Added support for "e" form of exponent.
*
* Revision 1.1.1.1  1997/01/14  01:38:12  george
*   Version 109.24
*
*)
```