SCM Repository
[smlnj] / sml / trunk / src / system / Basis / Implementation / real64.sml |
View of /sml/trunk/src/system/Basis/Implementation/real64.sml
Parent Directory
|
Revision Log
Revision 1375 -
(download)
(annotate)
Mon Sep 15 22:44:08 2003 UTC (17 years, 4 months ago) by mblume
File size: 10675 byte(s)
Mon Sep 15 22:44:08 2003 UTC (17 years, 4 months ago) by mblume
File size: 10675 byte(s)
fixed bug in Real.fromLargeInt
(* real64.sml * * COPYRIGHT (c) 1995 AT&T Bell Laboratories. * *) structure Real64Imp : REAL = struct structure I = InlineT.DfltInt structure Math = Math64 infix 4 == != type real = real fun *+(a:real,b,c) = a*b+c fun *-(a:real,b,c) = a*b-c val op == = InlineT.Real64.== val op != = InlineT.Real64.!= fun unordered(x:real,y) = Bool.not(x>y orelse x <= y) fun ?= (x, y) = (x == y) orelse unordered(x, y) fun isNormal x = (case Assembly.A.logb x of ~1023 => false (* 0.0 or subnormal *) | 1024 => false (* inf or nan *) | _ => true (* end case *)) val rbase = 1073741824.0 (* should be taken from CoreIntInf.base *) (* The next three values are computed laboriously, partly to * avoid problems with inaccurate string->float conversions * in the compiler itself. *) val maxFinite = let fun f(x,i) = if i=1023 then x else f(x*2.0, i + 1) val y = f(1.0,0) fun g(z, y, 0) = z | g(z, y, i) = g (z+y, y*0.5, i - 1) in g(0.0,y,53) end val minNormalPos = let fun f(x) = let val y = x * 0.5 in if isNormal y then f y else x end in f 1.0 end local (* The x86 uses extended precision (80 bits) internally, therefore * it is necessary to write out the result of r * 0.5 to get * 64 bit precision. *) val mem = InlineT.PolyArray.array(1, minNormalPos) val update = InlineT.PolyArray.update val subscript = InlineT.PolyArray.chkSub fun f () = let val r = subscript(mem, 0) val y = r * 0.5 in update(mem, 0, y); if subscript(mem, 0) == 0.0 then r else f () end in val minPos = f() end val posInf = maxFinite * maxFinite val negInf = ~posInf fun isFinite x = negInf < x andalso x < posInf fun isNan x = Bool.not(x==x) fun floor x = if x < 1073741824.0 andalso x >= ~1073741824.0 then Assembly.A.floor x else if isNan x then raise General.Domain else raise General.Overflow fun ceil n = ~1 - floor (~1.0 - n) fun trunc n = if n < 0.0 then ceil n else floor n fun round x = (* ties go to the nearest even number *) let val fl = floor(x+0.5) val cl = ceil(x-0.5) in if fl=cl then fl else if Word31Imp.andb(Word31Imp.fromInt fl,0w1) = 0w1 then cl else fl end (* This is the IEEE double-precision maxint *) val maxInt = 4503599627370496.0 local (* realround mode x returns x rounded to the nearest integer using the * given rounding mode. * May be applied to inf's and nan's. *) fun realround mode x = let val saveMode = IEEEReal.getRoundingMode () in IEEEReal.setRoundingMode mode; (if x>=0.0 then x+maxInt-maxInt else x-maxInt+maxInt) before IEEEReal.setRoundingMode saveMode end in val realFloor = realround IEEEReal.TO_NEGINF val realCeil = realround IEEEReal.TO_POSINF val realTrunc = realround IEEEReal.TO_ZERO end val abs : real -> real = InlineT.Real64.abs val fromInt : int -> real = InlineT.real fun toInt IEEEReal.TO_NEGINF = floor | toInt IEEEReal.TO_POSINF = ceil | toInt IEEEReal.TO_ZERO = trunc | toInt IEEEReal.TO_NEAREST = round fun toLarge x = x fun fromLarge _ x = x fun sign x = if (x < 0.0) then ~1 else if (x > 0.0) then 1 else if isNan x then raise Domain else 0 fun signBit x = (* Bug: negative zero not handled properly *) Assembly.A.scalb(x, ~(Assembly.A.logb x)) < 0.0 fun sameSign (x, y) = signBit x = signBit y fun copySign(x,y) = (* may not work if x is Nan *) if sameSign(x,y) then x else ~x fun compare(x,y) = if x<y then General.LESS else if x>y then General.GREATER else if x == y then General.EQUAL else raise IEEEReal.Unordered fun compareReal(x,y) = if x<y then IEEEReal.LESS else if x>y then IEEEReal.GREATER else if x == y then IEEEReal.EQUAL else IEEEReal.UNORDERED (** This proably needs to be reorganized **) fun class x = (* does not distinguish between quiet and signalling NaN *) if signBit x then if x>negInf then if x == 0.0 then IEEEReal.ZERO else if Assembly.A.logb x = ~1023 then IEEEReal.SUBNORMAL else IEEEReal.NORMAL else if x==x then IEEEReal.INF else IEEEReal.NAN IEEEReal.QUIET else if x<posInf then if x == 0.0 then IEEEReal.ZERO else if Assembly.A.logb x = ~1023 then IEEEReal.SUBNORMAL else IEEEReal.NORMAL else if x==x then IEEEReal.INF else IEEEReal.NAN IEEEReal.QUIET val radix = 2 val precision = 52 val radix_to_the_precision = 18014398509481984.0 val two_to_the_neg_1000 = let fun f(i,x) = if i=0 then x else f(i - 1, x*0.5) in f(1000, 1.0) end (* AARGH! Our version of logb gives a value that's one less than the rest of the world's logb functions. We should fix this systematically some time. *) fun toManExp x = case Assembly.A.logb x + 1 of ~1023 => if x==0.0 then {man=x,exp=0} else let val {man=m,exp=e} = toManExp(x*1048576.0) in { man = m, exp = e - 20 } end | 1024 => {man=x,exp=0} | i => {man=Assembly.A.scalb(x, ~i),exp=i} fun fromManExp {man=m,exp=e:int} = if (m >= 0.5 andalso m <= 1.0 orelse m <= ~0.5 andalso m >= ~1.0) then if e > 1020 then if e > 1050 then if m>0.0 then posInf else negInf else let fun f(i,x) = if i=0 then x else f(i-1,x+x) in f(e-1020, Assembly.A.scalb(m,1020)) end else if e < ~1020 then if e < ~1200 then 0.0 else let fun f(i,x) = if i=0 then x else f(i-1, x*0.5) in f(1020-e, Assembly.A.scalb(m, ~1020)) end else Assembly.A.scalb(m,e) (* This is the common case! *) else let val {man=m',exp=e'} = toManExp m in fromManExp { man = m', exp = e'+ e } end fun fromLargeInt(x : IntInf.int) = let val CoreIntInf.BI { negative, digits } = CoreIntInf.concrete x val w2r = fromInt o InlineT.Word31.copyt_int31 fun calc [] = 0.0 | calc (d :: ds) = w2r d + rbase * calc ds val m = calc digits in if negative then ~m else m end (* whole and split could be implemented more efficiently if we had * control over the rounding mode; but for now we don't. *) fun whole x = if x>0.0 then if x > 0.5 then x-0.5+maxInt-maxInt else whole(x+1.0)-1.0 else if x<0.0 then if x < ~0.5 then x+0.5-maxInt+maxInt else whole(x-1.0)+1.0 else x fun split x = let val w = whole x val f = x-w in if abs(f)==1.0 then {whole=w+f,frac=0.0} else {whole=w, frac=f} end fun realMod x = let val f = x - whole x in if abs f == 1.0 then 0.0 else f end fun rem(x,y) = y * #frac(split(x/y)) fun checkFloat x = if x>negInf andalso x<posInf then x else if isNan x then raise General.Div else raise General.Overflow fun toLargeInt mode x = if isNan x then raise Domain else if x == posInf orelse x == negInf then raise Overflow else let val (negative, x) = if x < 0.0 then (true, ~x) else (false, x) fun feven x = #frac (split (x / 2.0)) == 0.0 in (* if the magnitute is less than 1.0, then * we just have to figure out whether to return ~1, 0, or 1 *) if x < 1.0 then case mode of IEEEReal.TO_ZERO => 0 | IEEEReal.TO_POSINF => if negative then 0 else 1 | IEEEReal.TO_NEGINF => if negative then ~1 else 0 | IEEEReal.TO_NEAREST => if x < 0.5 then 0 else if x > 0.5 then if negative then ~1 else 1 else 0 (* 0 is even *) else (* Otherwise we start with an integral value, * suitably adjusted according to fractional part * and rounding mode: *) let val { whole, frac } = split x val start = case mode of IEEEReal.TO_NEGINF => if frac > 0.0 andalso negative then whole + 1.0 else whole | IEEEReal.TO_POSINF => if frac > 0.0 andalso not negative then whole + 1.0 else whole | IEEEReal.TO_ZERO => whole | IEEEReal.TO_NEAREST => if frac > 0.5 then whole + 1.0 else if frac < 0.5 then whole else if feven whole then whole else whole + 1.0 (* Now, for efficiency, we construct the * minimal whole number with * all the significant bits. First * we get mantissa and exponent: *) val { man, exp } = toManExp start (* Then we adjust both to make sure the mantissa * is whole: *) fun adjust (man, exp) = if exp = 0 orelse #frac (split man) == 0.0 then (man, exp) else adjust (2.0 * man, exp - 1) val (man, exp) = adjust (man, exp) (* Now we can construct our bignum digits by * repeated div/mod using the bignum base: *) fun loop x = if x == 0.0 then [] else let val { whole, frac } = split (x / rbase) val dig = InlineT.Word31.copyf_int31 (Assembly.A.floor (frac * rbase)) in dig :: loop whole end (* Now we make a bignum out of those digits: *) val iman = CoreIntInf.abstract (CoreIntInf.BI { negative = negative, digits = loop man }) in (* Finally, we have to put the exponent back * into the picture: *) IntInfImp.<< (iman, InlineT.Word31.copyf_int31 exp) end end fun nextAfter _ = raise Fail "Real.nextAfter unimplemented" val min : real * real -> real = InlineT.Real64.min val max : real * real -> real = InlineT.Real64.max (* fun min(x,y) = if x<y orelse isNan y then x else y fun max(x,y) = if x>y orelse isNan y then x else y *) fun toDecimal _ = raise Fail "Real.toDecimal unimplemented" fun fromDecimal _ = raise Fail "Real.fromDecimal unimplemented" val fmt = RealFormat.fmtReal val toString = fmt (StringCvt.GEN NONE) val scan = NumScan.scanReal val fromString = StringCvt.scanString scan val ~ = InlineT.Real64.~ val op + = InlineT.Real64.+ val op - = InlineT.Real64.- val op * = InlineT.Real64.* val op / = InlineT.Real64./ val op > = InlineT.Real64.> val op < = InlineT.Real64.< val op >= = InlineT.Real64.>= val op <= = InlineT.Real64.<= end (* Real64 *)
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |