36 |
\begin{figure}[t] |
\begin{figure}[t] |
37 |
\begin{displaymath} |
\begin{displaymath} |
38 |
\begin{array}{rclr} |
\begin{array}{rclr} |
39 |
\rho & ::= & $\ldots$ & \text{NRRD types} \\[1em] |
\rho & ::= & $\ldots$ & \text{NRRD scalar types} \\[1em] |
40 |
\iota & ::= & \TYbool & \text{booleans} \\ |
\iota & ::= & \TYbool & \text{booleans} \\ |
41 |
& \mid & \TYint & \text{integers} \\[1em] |
& \mid & \TYint & \text{integers} \\[1em] |
42 |
\theta & ::= & \TYtensor{o}{d} & \text{tensors of order $o$ and dimension $d$} \\[1em] |
% \mu for memory, where images of rawtensors will live (or on disk) |
43 |
|
\mu & ::= & \TYrawten{o}{d}{\rho} & \begin{minipage}[l]{3in}\begin{flushright} |
44 |
|
tensors of order $o$ and dimension $d$,\\with coefficients of type $\rho$ |
45 |
|
\end{flushright}\end{minipage}\\[1em] |
46 |
|
\theta & ::= & \TYtensor{o}{d} & \begin{minipage}[l]{3in}\begin{flushright} |
47 |
|
tensors of order $o$ and dimension $d$,\\with real coefficients |
48 |
|
\end{flushright}\end{minipage}\\[1em] |
49 |
\tau & ::= & \iota \\ |
\tau & ::= & \iota \\ |
50 |
& \mid & \theta \\ |
& \mid & \theta \\ |
51 |
& \mid & \TYmatrix{n}{m} & \text{$n\times{}m$ matrix} \\ |
& \mid & \TYmatrix{n}{m} & \text{$n\times{}m$ matrix} \\ |
52 |
& \mid & \TYimage{d}{\rho} & \text{image of dimension $d$ and $\rho$ elements}\\ |
& \mid & \TYimage{d}{\mu} & \text{$d$-dimension image of $\mu$ values}\\ |
53 |
& \mid & \TYkern{k} & \text{convolution kernel with $k$ derivatives} \\ |
& \mid & \TYkern{k} & \text{convolution kernel with $k$ derivatives} \\ |
54 |
& \mid & \TYfield{k}{d}{\theta} & \text{$d$-dimension field of $\theta$ values and $k$ derivatives} \\ |
& \mid & \TYfield{k}{d}{\theta} & \text{$d$-dimension field of $\theta$ values with $k$ derivatives} \\ |
55 |
\end{array}% |
\end{array}% |
56 |
\end{displaymath}% |
\end{displaymath}% |
57 |
where $o\in\Nat$ is the tensor order, $d,n,m\in\SET{2,3}$ are dimensions, |
where $o\in\Nat$ is the tensor order, $d,n,m\in\SET{2,3}$ are dimensions, |
117 |
|
|
118 |
\noindent{}Creation from an image: |
\noindent{}Creation from an image: |
119 |
\begin{displaymath} |
\begin{displaymath} |
120 |
\BinopTy{\OPsample}{\TYkern{k}}{\TYimage{d}{\rho}}{\TYfield{k}{d}{\theta}} |
\BinopTy{\OPconvolve}{\TYkern{k}}{\TYimage{d}{\mu}}{\TYfield{k}{d}{\theta}} |
121 |
\qquad\text{where $\theta$ is the real conversion of $\rho$.} |
\qquad\text{where $\theta$ is the real conversion of $\mu$.} |
122 |
\end{displaymath}% |
\end{displaymath}% |
123 |
|
|
124 |
\noindent{}Scalar multiplication: |
\noindent{}Scalar multiplication: |
134 |
\BinopTy{{/}}{\TYfield{k}{d}{\theta}}{\TYreal}{\TYfield{k}{d}{\theta}} |
\BinopTy{{/}}{\TYfield{k}{d}{\theta}}{\TYreal}{\TYfield{k}{d}{\theta}} |
135 |
\end{displaymath}% |
\end{displaymath}% |
136 |
|
|
137 |
|
\noindent{}Negation: |
138 |
|
\begin{displaymath} |
139 |
|
\UnopTy{-}{\TYfield{k}{d}{\theta}}{\TYfield{k}{d}{\theta}} |
140 |
|
\end{displaymath}% |
141 |
|
|
142 |
\noindent{}Addition: |
\noindent{}Addition: |
143 |
\begin{displaymath} |
\begin{displaymath} |
144 |
|
\begin{array}{c} |
145 |
|
\BinopTy{{\odot}}{\TYfield{k}{d}{\theta}}{\theta}{\TYfield{k}{d}{\theta}} \\ |
146 |
|
\BinopTy{{\odot}}{\theta}{\TYfield{k}{d}{\theta}}{\TYfield{k}{d}{\theta}} \\ |
147 |
\BinopTy{{\odot}}{\TYfield{k_1}{d}{\theta}}{\TYfield{k_2}{d}{\theta}}{\TYfield{\min(k_1,k_2)}{d}{\theta}} |
\BinopTy{{\odot}}{\TYfield{k_1}{d}{\theta}}{\TYfield{k_2}{d}{\theta}}{\TYfield{\min(k_1,k_2)}{d}{\theta}} |
148 |
|
\end{array}% |
149 |
\qquad\text{for $\odot\in\SET{{+},{-}}$} |
\qquad\text{for $\odot\in\SET{{+},{-}}$} |
150 |
\end{displaymath}% |
\end{displaymath}% |
151 |
|
|
160 |
\BinopTy{@}{\TYfield{k}{d}{\theta}}{\TYvec{d}}{\theta} |
\BinopTy{@}{\TYfield{k}{d}{\theta}}{\TYvec{d}}{\theta} |
161 |
\end{displaymath}% |
\end{displaymath}% |
162 |
|
|
|
\noindent{}Tensor arithmetic: |
|
|
\begin{displaymath} |
|
|
\begin{array}{c} |
|
|
\BinopTy{{\odot}}{\TYfield{k}{d}{\tau}}{\tau}{\TYfield{k}{d}{\tau}} \\ |
|
|
\BinopTy{{\odot}}{\tau}{\TYfield{k}{d}{\tau}}{\TYfield{k}{d}{\tau}} |
|
|
\end{array} \qquad\text{for $\odot\in\SET{{+},{-}}$} |
|
|
\end{displaymath}% |
|
|
|
|
163 |
\end{document} |
\end{document} |