1 : |
glk |
10 |
\documentclass[11pt]{article}
|
2 : |
|
|
|
3 : |
|
|
\usepackage{amsmath}
|
4 : |
|
|
\usepackage{amsfonts}
|
5 : |
|
|
\usepackage{array}
|
6 : |
|
|
\usepackage{amssymb}
|
7 : |
|
|
\usepackage{bm}
|
8 : |
|
|
|
9 : |
|
|
\newcommand{\bx}{\mathbf{x}}
|
10 : |
|
|
\newcommand{\bH}{\mathbf{H}}
|
11 : |
|
|
\newcommand{\ie}{{\em i.e.}}
|
12 : |
|
|
|
13 : |
|
|
\begin{document}
|
14 : |
|
|
|
15 : |
|
|
\title{Math for Diderot}
|
16 : |
|
|
|
17 : |
|
|
In the following,
|
18 : |
|
|
\begin{itemize}
|
19 : |
|
|
\item $\bx$ is a vector (an element of some vector space $W$)
|
20 : |
|
|
\item $\alpha$ is a constant scalar
|
21 : |
|
|
\item $f$ and $g$ are scalar functions of $W$
|
22 : |
|
|
\item $\mathbf{u} \otimes \mathbf{v}$ is tensor product of two vectors,
|
23 : |
|
|
computed as the outer product of their vectors of coefficients in
|
24 : |
|
|
some basis.
|
25 : |
|
|
\item $\nabla f$ is a the gradient (first derivative) of $f$,
|
26 : |
|
|
computed in 3-D as:
|
27 : |
|
|
\begin{equation}
|
28 : |
|
|
\nabla f = \begin{bmatrix}
|
29 : |
|
|
\frac{\partial}{\partial x} \\
|
30 : |
|
|
\frac{\partial}{\partial y} \\
|
31 : |
|
|
\frac{\partial}{\partial z}
|
32 : |
|
|
\end{bmatrix} f
|
33 : |
|
|
= \begin{bmatrix}
|
34 : |
|
|
\frac{\partial f}{\partial x} \\
|
35 : |
|
|
\frac{\partial f}{\partial y} \\
|
36 : |
|
|
\frac{\partial f}{\partial z}
|
37 : |
|
|
\end{bmatrix}
|
38 : |
|
|
\end{equation}
|
39 : |
|
|
where $x$, $y$, $z$ are the coordinates in $W$ (\ie{} some basis
|
40 : |
|
|
is assumed). The formulae below don't assume a particular dimension.
|
41 : |
|
|
Note that $\nabla$ can also be used to define divergence and curl
|
42 : |
|
|
of vector fields, but for the time being these are not Diderot's concern.
|
43 : |
|
|
\item $\bH f = \nabla \otimes \nabla f$ is the Hessian (second derivative)
|
44 : |
|
|
of $f$, computed in 3-D as:
|
45 : |
|
|
\begin{equation}
|
46 : |
|
|
\bH f = \begin{bmatrix}
|
47 : |
|
|
\frac{\partial}{\partial x} \\
|
48 : |
|
|
\frac{\partial}{\partial y} \\
|
49 : |
|
|
\frac{\partial}{\partial z}
|
50 : |
|
|
\end{bmatrix} \begin{bmatrix}
|
51 : |
|
|
\frac{\partial}{\partial x} &
|
52 : |
|
|
\frac{\partial}{\partial y} &
|
53 : |
|
|
\frac{\partial}{\partial z}
|
54 : |
|
|
\end{bmatrix} f
|
55 : |
|
|
= \begin{bmatrix}
|
56 : |
|
|
\frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_3} \\
|
57 : |
|
|
\frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 \partial x_3} \\
|
58 : |
|
|
\frac{\partial^2 f}{\partial x_1 \partial x_3} & \frac{\partial^2 f}{\partial x_2 \partial x_3} & \frac{\partial^2 f}{\partial x_3^2}
|
59 : |
|
|
\end{bmatrix}
|
60 : |
|
|
\end{equation}
|
61 : |
|
|
\end{itemize}
|
62 : |
|
|
|
63 : |
|
|
Basic rules for the gradient:
|
64 : |
|
|
\begin{align}
|
65 : |
|
|
\nabla (f + g) &= \nabla f + \nabla g \\
|
66 : |
|
|
\nabla (f g) &= f \nabla g + g \nabla f \label{eq:grad-prod} \\
|
67 : |
|
|
\nabla (\alpha f) &= \alpha \nabla f \label{eq:grad-scale} \\
|
68 : |
|
|
\nabla (f^n) &= n f^{n-1} \nabla f \label{eq:grad-pow} \\
|
69 : |
|
|
\nabla \left(\frac{f}{g}\right)
|
70 : |
|
|
&= \frac{\nabla f}{g} - \frac{f \nabla g}{g^2} \label{eq:grad-frac} \\
|
71 : |
|
|
\end{align}
|
72 : |
|
|
|
73 : |
|
|
(\ref{eq:grad-scale}) follows from (\ref{eq:grad-prod}) with $\nabla
|
74 : |
|
|
\alpha = 0$. (\ref{eq:grad-frac}) follows from (\ref{eq:grad-pow}).
|
75 : |
|
|
|
76 : |
|
|
Basic rules for the Hessian:
|
77 : |
|
|
\begin{align}
|
78 : |
|
|
\bH (f + g) &= \bH f + \bH g \\
|
79 : |
|
|
\bH (\alpha f) &= \alpha \bH f \\
|
80 : |
|
|
\bH (f g) &= f \bH g + \nabla f \otimes \nabla g + \nabla g \otimes \nabla f + g \bH f \\
|
81 : |
|
|
\bH \left(\frac{f}{g}\right) &=
|
82 : |
|
|
\frac{\bH f}{g}
|
83 : |
|
|
- \frac{\nabla f \otimes \nabla g + \nabla g \otimes \nabla f + f \bH g}{g^2}
|
84 : |
|
|
+ \frac{2 f \nabla g \otimes \nabla g}{g^3} \label{eq:hess-quot} \\
|
85 : |
|
|
\bH (f^n) &= n f^{n-2} \left( (n-1) \nabla f \otimes \nabla f + f \bH f \right) \label{eq:hess-pow}
|
86 : |
|
|
\end{align}
|
87 : |
|
|
|
88 : |
|
|
All of these can actually be derived with $\bH f = \nabla \otimes \nabla f$
|
89 : |
|
|
and the rules above. Someone may want to doublecheck (\ref{eq:hess-quot}).
|
90 : |
|
|
|
91 : |
|
|
\end{document}
|