8 |
|
|
9 |
structure Basis = |
structure Basis = |
10 |
struct |
struct |
11 |
|
local |
12 |
|
structure N = BasisNames |
13 |
|
structure Ty = Types |
14 |
|
|
15 |
|
fun --> (tys1, ty) = Ty.T_Fun(tys1, [ty]) |
16 |
|
infix --> |
17 |
|
|
18 |
|
val N2 = Ty.NatConst 2 |
19 |
|
val N3 = Ty.NatConst 3 |
20 |
|
|
21 |
|
(* short names for kinds *) |
22 |
|
val NK = Ty.TK_NAT |
23 |
|
val SK = Ty.TK_SHAPE |
24 |
|
val TK = Ty.TK_TYPE |
25 |
|
|
26 |
|
fun ty t = ([], t) |
27 |
|
fun all (kinds, mkTy) = let |
28 |
|
val tvs = List.map (fn k => TV.new k) kinds |
29 |
|
in |
30 |
|
(tvs, mkTy tvs) |
31 |
|
end |
32 |
|
fun allNK mkTy = let |
33 |
|
val tv = TV.new NK |
34 |
|
in |
35 |
|
([tv], mkTy tv) |
36 |
|
end |
37 |
|
|
38 |
|
fun field (k, d, dd) = Ty.T_Field{diff=k, dim=d, shape=dd} |
39 |
|
fun tensor ds = Ty.T_Tensor(Ty.Shape ds) |
40 |
|
|
41 |
|
in |
42 |
|
|
43 |
|
val basis = [ |
44 |
|
(* operators *) |
45 |
|
(N.op_at, all([NK, NK, SK], |
46 |
|
fn [k, d, dd] => let |
47 |
|
val k = Ty.NatVar k |
48 |
|
val d = Ty.NatVar d |
49 |
|
val dd = Ty.ShapeVar dd |
50 |
|
in |
51 |
|
[field(k, d, dd), tensor[d]] --> Ty.T_Tensor dd |
52 |
|
end)), |
53 |
|
(* |
54 |
|
val op_add = Atom.atom "+" |
55 |
|
val op_sub = Atom.atom "-" |
56 |
|
val op_mul = Atom.atom "*" |
57 |
|
val op_div = Atom.atom "/" |
58 |
|
val op_lt = Atom.atom "<" |
59 |
|
val op_lte = Atom.atom "<=" |
60 |
|
val op_eql = Atom.atom "==" |
61 |
|
val op_neq = Atom.atom "!=" |
62 |
|
val op_gte = Atom.atom ">=" |
63 |
|
val op_gt = Atom.atom ">" |
64 |
|
*) |
65 |
|
(N.op_at, all([NK, NK, SK], |
66 |
|
fn [k, d, dd] => let |
67 |
|
val k = Ty.NatVar k |
68 |
|
val d = Ty.NatVar d |
69 |
|
val dd = Ty.ShapeVar dd |
70 |
|
in |
71 |
|
[field(k, d, dd), tensor[d]] |
72 |
|
--> field(Ty.NatExp(k, ~1), d, Ty.ShapeExt(dd, d)) |
73 |
|
end)), |
74 |
|
(* |
75 |
|
val op_orelse = Atom.atom "||" |
76 |
|
val op_andalso = Atom.atom "&&" |
77 |
|
*) |
78 |
|
(N.op_norm, all([SK], |
79 |
|
fn [dd] => [Ty.T_Tensor(Ty.ShapeVar dd)] --> Ty.realTy)), |
80 |
|
(* functions *) |
81 |
|
(N.fn_CL, ty([tensor[N3, N3]] --> Ty.vec3Ty)), |
82 |
|
(N.fn_convolve, all([NK, NK, SK], |
83 |
|
fn [k, d, dd] => let |
84 |
|
val k = Ty.NatVar k |
85 |
|
val d = Ty.NatVar d |
86 |
|
val dd = Ty.ShapeVar dd |
87 |
|
in |
88 |
|
[Ty.T_Kernel k, Ty.T_Image{dim=d, shape=dd}] |
89 |
|
--> field(k, d, dd) |
90 |
|
end)), |
91 |
|
(N.fn_cos, ty([Ty.realTy] --> Ty.realTy)), |
92 |
|
(N.fn_dot, allNK(fn tv => [tensor[Ty.NatVar tv]] |
93 |
|
--> tensor[Ty.NatVar tv])), |
94 |
|
(* |
95 |
|
val fn_inside = Atom.atom "inside" |
96 |
|
*) |
97 |
|
(N.fn_load, all([NK, SK], |
98 |
|
fn [d, dd] => let |
99 |
|
val d = Ty.NatVar d |
100 |
|
val dd = Ty.ShapeVar dd |
101 |
|
in |
102 |
|
[Ty.T_String] --> Ty.T_Image{dim=d, shape=dd} |
103 |
|
end)), |
104 |
|
(N.fn_pow, ty([Ty.realTy, Ty.realTy] --> Ty.realTy)), |
105 |
|
(* |
106 |
|
val fn_principleEvec = Atom.atom "principleEvec" |
107 |
|
*) |
108 |
|
(N.fn_sin, ty([Ty.realTy] --> Ty.realTy)), |
109 |
|
(* kernels *) |
110 |
|
(N.kn_bspln3, ty(Ty.T_Kernel(Ty.NatConst 2))), |
111 |
|
(N.kn_tent, ty(Ty.T_Kernel(Ty.NatConst 0))) |
112 |
|
] |
113 |
|
|
114 |
|
end (* local *) |
115 |
end |
end |