11 |
local |
local |
12 |
structure N = BasisNames |
structure N = BasisNames |
13 |
structure Ty = Types |
structure Ty = Types |
14 |
structure TV = TypeVar |
structure MV = MetaVar |
15 |
|
|
16 |
fun --> (tys1, ty) = Ty.T_Fun(tys1, [ty]) |
fun --> (tys1, ty) = Ty.T_Fun(tys1, [ty]) |
17 |
infix --> |
infix --> |
18 |
|
|
19 |
val N2 = Ty.NatConst 2 |
val N2 = Ty.DimConst 2 |
20 |
val N3 = Ty.NatConst 3 |
val N3 = Ty.DimConst 3 |
21 |
|
|
22 |
(* short names for kinds *) |
(* short names for kinds *) |
23 |
val NK = Ty.TK_NAT |
val TK : unit -> Ty.meta_var = Ty.TYPE o MV.newTyVar |
24 |
val SK = Ty.TK_SHAPE |
val DK : unit -> Ty.meta_var = Ty.DIFF o MV.newDiffVar |
25 |
val TK = Ty.TK_TYPE |
val SK : unit -> Ty.meta_var = Ty.SHAPE o MV.newShapeVar |
26 |
|
val NK : unit -> Ty.meta_var = Ty.DIM o MV.newDimVar |
27 |
|
|
28 |
fun ty t = ([], t) |
fun ty t = ([], t) |
29 |
fun all (kinds, mkTy) = let |
fun all (kinds, mkTy) = let |
30 |
val tvs = List.map (fn k => TV.new k) kinds |
val tvs = List.map (fn mk => mk()) kinds |
31 |
in |
in |
32 |
(tvs, mkTy tvs) |
(tvs, mkTy tvs) |
33 |
end |
end |
34 |
fun allNK mkTy = let |
fun allNK mkTy = let |
35 |
val tv = TV.new NK |
val tv = MV.newDimVar() |
36 |
in |
in |
37 |
([tv], mkTy tv) |
([Ty.DIM tv], mkTy tv) |
38 |
end |
end |
39 |
|
|
40 |
fun field (k, d, dd) = Ty.T_Field{diff=k, dim=d, shape=dd} |
fun field (k, d, dd) = Ty.T_Field{diff=k, dim=d, shape=dd} |
42 |
|
|
43 |
in |
in |
44 |
|
|
45 |
val basis = [ |
(* overloaded operators *) |
46 |
(* operators *) |
val overloads = [ |
|
(N.op_at, all([NK, NK, SK], |
|
|
fn [k, d, dd] => let |
|
|
val k = Ty.NatVar k |
|
|
val d = Ty.NatVar d |
|
|
val dd = Ty.ShapeVar dd |
|
|
in |
|
|
[field(k, d, dd), tensor[d]] --> Ty.T_Tensor dd |
|
|
end)), |
|
47 |
(* |
(* |
48 |
val op_add = Atom.atom "+" |
val op_add = Atom.atom "+" |
49 |
val op_sub = Atom.atom "-" |
val op_sub = Atom.atom "-" |
56 |
val op_gte = Atom.atom ">=" |
val op_gte = Atom.atom ">=" |
57 |
val op_gt = Atom.atom ">" |
val op_gt = Atom.atom ">" |
58 |
*) |
*) |
59 |
(N.op_at, all([NK, NK, SK], |
] |
60 |
fn [k, d, dd] => let |
|
61 |
val k = Ty.NatVar k |
(* non-overloaded operators, etc. *) |
62 |
val d = Ty.NatVar d |
val basis = [ |
63 |
|
(* operators *) |
64 |
|
(N.op_at, all([DK, NK, SK], |
65 |
|
fn [Ty.DIFF k, Ty.DIM d, Ty.SHAPE dd] => let |
66 |
|
val k = Ty.DiffVar(k, 0) |
67 |
|
val d = Ty.DimVar d |
68 |
val dd = Ty.ShapeVar dd |
val dd = Ty.ShapeVar dd |
69 |
in |
in |
70 |
[field(k, d, dd), tensor[d]] |
[field(k, d, dd), tensor[d]] --> Ty.T_Tensor dd |
71 |
--> field(Ty.NatExp(k, ~1), d, Ty.ShapeExt(dd, d)) |
end)), |
72 |
|
(N.op_at, all([DK, NK, SK], |
73 |
|
fn [Ty.DIFF k, Ty.DIM d, Ty.SHAPE dd] => let |
74 |
|
val k0 = Ty.DiffVar(k, 0) |
75 |
|
val km1 = Ty.DiffVar(k, ~1) |
76 |
|
val d = Ty.DimVar d |
77 |
|
val dd = Ty.ShapeVar dd |
78 |
|
in |
79 |
|
[field(k0, d, dd), tensor[d]] |
80 |
|
--> field(km1, d, Ty.ShapeExt(dd, d)) |
81 |
end)), |
end)), |
|
(* |
|
|
val op_orelse = Atom.atom "||" |
|
|
val op_andalso = Atom.atom "&&" |
|
|
*) |
|
82 |
(N.op_norm, all([SK], |
(N.op_norm, all([SK], |
83 |
fn [dd] => [Ty.T_Tensor(Ty.ShapeVar dd)] --> Ty.realTy)), |
fn [Ty.SHAPE dd] => [Ty.T_Tensor(Ty.ShapeVar dd)] --> Ty.realTy)), |
84 |
(* functions *) |
(* functions *) |
85 |
(N.fn_CL, ty([tensor[N3, N3]] --> Ty.vec3Ty)), |
(N.fn_CL, ty([tensor[N3, N3]] --> Ty.vec3Ty)), |
86 |
(N.fn_convolve, all([NK, NK, SK], |
(N.fn_convolve, all([DK, NK, SK], |
87 |
fn [k, d, dd] => let |
fn [Ty.DIFF k, Ty.DIM d, Ty.SHAPE dd] => let |
88 |
val k = Ty.NatVar k |
val k = Ty.DiffVar(k, 0) |
89 |
val d = Ty.NatVar d |
val d = Ty.DimVar d |
90 |
val dd = Ty.ShapeVar dd |
val dd = Ty.ShapeVar dd |
91 |
in |
in |
92 |
[Ty.T_Kernel k, Ty.T_Image{dim=d, shape=dd}] |
[Ty.T_Kernel k, Ty.T_Image{dim=d, shape=dd}] |
93 |
--> field(k, d, dd) |
--> field(k, d, dd) |
94 |
end)), |
end)), |
95 |
(N.fn_cos, ty([Ty.realTy] --> Ty.realTy)), |
(N.fn_cos, ty([Ty.realTy] --> Ty.realTy)), |
96 |
(N.fn_dot, allNK(fn tv => [tensor[Ty.NatVar tv]] |
(N.fn_dot, allNK(fn tv => [tensor[Ty.DimVar tv]] |
97 |
--> tensor[Ty.NatVar tv])), |
--> tensor[Ty.DimVar tv])), |
98 |
(* |
(N.fn_inside, all([DK, NK, SK], |
99 |
val fn_inside = Atom.atom "inside" |
fn [Ty.DIFF k, Ty.DIM d, Ty.SHAPE dd] => let |
100 |
*) |
val k = Ty.DiffVar(k, 0) |
101 |
|
val d = Ty.DimVar d |
102 |
|
val dd = Ty.ShapeVar dd |
103 |
|
in |
104 |
|
[Ty.T_Tensor(Ty.Shape[d]), field(k, d, dd)] |
105 |
|
--> Ty.T_Bool |
106 |
|
end)), |
107 |
(N.fn_load, all([NK, SK], |
(N.fn_load, all([NK, SK], |
108 |
fn [d, dd] => let |
fn [Ty.DIM d, Ty.SHAPE dd] => let |
109 |
val d = Ty.NatVar d |
val d = Ty.DimVar d |
110 |
val dd = Ty.ShapeVar dd |
val dd = Ty.ShapeVar dd |
111 |
in |
in |
112 |
[Ty.T_String] --> Ty.T_Image{dim=d, shape=dd} |
[Ty.T_String] --> Ty.T_Image{dim=d, shape=dd} |
117 |
*) |
*) |
118 |
(N.fn_sin, ty([Ty.realTy] --> Ty.realTy)), |
(N.fn_sin, ty([Ty.realTy] --> Ty.realTy)), |
119 |
(* kernels *) |
(* kernels *) |
120 |
(N.kn_bspln3, ty(Ty.T_Kernel(Ty.NatConst 2))), |
(N.kn_bspln3, ty(Ty.T_Kernel(Ty.DiffConst 2))), |
121 |
(N.kn_tent, ty(Ty.T_Kernel(Ty.NatConst 0))) |
(N.kn_tent, ty(Ty.T_Kernel(Ty.DiffConst 0))) |
122 |
] |
] |
123 |
|
|
124 |
end (* local *) |
end (* local *) |