Home My Page Projects Code Snippets Project Openings diderot
Summary Activity Tracker Tasks SCM

SCM Repository

[diderot] View of /trunk/src/include/Diderot/inline-matrix.h
ViewVC logotype

View of /trunk/src/include/Diderot/inline-matrix.h

Parent Directory Parent Directory | Revision Log Revision Log


Revision 1380 - (download) (as text) (annotate)
Thu Jun 23 19:20:07 2011 UTC (7 years, 9 months ago) by jhr
File size: 6130 byte(s)
  merging changes from pure-cfg
/*! \file inline-matrix.h
 *
 * \author John Reppy
 */

/*
 * COPYRIGHT (c) 2011 The Diderot Project (http://diderot-language.cs.uchicago.edu)
 * All rights reserved.
 */

#ifndef _DIDEROT_INLINE_MATRIX_H_
#define _DIDEROT_INLINE_MATRIX_H_

#ifndef _DIDEROT_TYPES_H_
#include "types.h"
#endif
#ifndef _DIDEROT_INLINE_VEC2_H_
#  include "inline-vec2.h"
#endif
#ifndef _DIDEROT_INLINE_VEC3_H_
#  include "inline-vec3.h"
#endif
#ifndef _DIDEROT_INLINE_VEC4_H_
#  include "inline-vec4.h"
#endif


/********** 2x2 matrix functions **********/

STATIC_INLINE void zero2x2f (Diderot_Mat2x2_t dst)
{
    dst[0].v = vec2f(0.0, 0.0);
    dst[1].v = vec2f(0.0, 0.0);
}

STATIC_INLINE void identity2x2f (Diderot_Mat2x2_t dst)
{
    dst[0].v = vec2f(1.0, 0.0);
    dst[1].v = vec2f(0.0, 1.0);
}

STATIC_INLINE vec2f_t column2x2f (Diderot_Mat2x2_t m, int i)
{
    return vec2f(m[0].r[i], m[1].r[i]);
}

STATIC_INLINE void copy2x2f (Diderot_Mat2x2_t dst, Diderot_Mat2x2_t src)
{
    dst[0].v = src[0].v;
    dst[1].v = src[1].v;
}

STATIC_INLINE void scale2x2f (Diderot_Mat2x2_t dst, float s, Diderot_Mat2x2_t src)
{
    vec2f_t scale = vec2f(s, s);
    dst[0].v = scale * src[0].v;
    dst[1].v = scale * src[1].v;
}

STATIC_INLINE void add2x2f (Diderot_Mat2x2_t dst, Diderot_Mat2x2_t a, Diderot_Mat2x2_t b)
{
    dst[0].v = a[0].v + b[0].v;
    dst[1].v = a[1].v + b[1].v;
}

STATIC_INLINE void sub2x2f (Diderot_Mat2x2_t dst, Diderot_Mat2x2_t a, Diderot_Mat2x2_t b)
{
    dst[0].v = a[0].v - b[0].v;
    dst[1].v = a[1].v - b[1].v;
}

STATIC_INLINE vec2f_t mulVec3Mat2x2f (vec2f_t v, Diderot_Mat2x2_t m)
{
    return vec2f(
	dot2f(v, column2x2f(m, 0)),
	dot2f(v, column2x2f(m, 1)));
}

STATIC_INLINE vec2f_t mulMat2x2Vec2f (Diderot_Mat2x2_t m, vec2f_t v)
{
    return vec2f(dot2f(m[0].v, v), dot2f(m[1].v, v));
}

STATIC_INLINE void mulMat2x2Mat2x2f (Diderot_Mat2x2_t dst, Diderot_Mat2x2_t m1, Diderot_Mat2x2_t m2)
{
    dst[0].v = vec2f(
	dot2f(m1[0].v, column2x2f(m2, 0)),
	dot2f(m1[0].v, column2x2f(m2, 1)));
    dst[1].v = vec2f(
	dot2f(m1[1].v, column2x2f(m2, 0)),
	dot2f(m1[1].v, column2x2f(m2, 1)));
}

STATIC_INLINE void transpose2x2f (Diderot_Mat2x2_t dst, Diderot_Mat2x2_t src)
{
    dst[0].v = column2x2f(src, 0);
    dst[1].v = column2x2f(src, 1);
}

STATIC_INLINE float trace2x2f (Diderot_Mat2x2_t m)
{
    return m[0].r[0] + m[1].r[1];
}

// The Frobenius norm of a matrix is the sqrt of the sum of the squares of the elements
STATIC_INLINE float norm2x2f (Diderot_Mat2x2_t m)
{
    return sqrtf(dot2f(m[0].v,m[0].v) + dot2f(m[1].v,m[1].v));
}


/********** 3x3 matrix functions **********/

STATIC_INLINE void zero3x3f (Diderot_Mat3x3_t dst)
{
    dst[0].v = vec3f(0.0, 0.0, 0.0);
    dst[1].v = vec3f(0.0, 0.0, 0.0);
    dst[2].v = vec3f(0.0, 0.0, 0.0);
}

STATIC_INLINE void identity3x3f (Diderot_Mat3x3_t dst)
{
    dst[0].v = vec3f(1.0, 0.0, 0.0);
    dst[1].v = vec3f(0.0, 1.0, 0.0);
    dst[2].v = vec3f(0.0, 0.0, 1.0);
}

STATIC_INLINE vec3f_t column3x3f (Diderot_Mat3x3_t m, int i)
{
    return vec3f(m[0].r[i], m[1].r[i], m[2].r[i]);
}

STATIC_INLINE void copy3x3f (Diderot_Mat3x3_t dst, Diderot_Mat3x3_t src)
{
    dst[0].v = src[0].v;
    dst[1].v = src[1].v;
    dst[2].v = src[2].v;
}
STATIC_INLINE void scale3x3f (Diderot_Mat3x3_t dst, float s, Diderot_Mat3x3_t src)
{
    vec3f_t scale = vec3f(s, s, s);
    dst[0].v = scale * src[0].v;
    dst[1].v = scale * src[1].v;
    dst[2].v = scale * src[2].v;
}

STATIC_INLINE void add3x3f (Diderot_Mat3x3_t dst, Diderot_Mat3x3_t a, Diderot_Mat3x3_t b)
{
    dst[0].v = a[0].v + b[0].v;
    dst[1].v = a[1].v + b[1].v;
    dst[2].v = a[2].v + b[2].v;
}

STATIC_INLINE void sub3x3f (Diderot_Mat3x3_t dst, Diderot_Mat3x3_t a, Diderot_Mat3x3_t b)
{
    dst[0].v = a[0].v - b[0].v;
    dst[1].v = a[1].v - b[1].v;
    dst[2].v = a[2].v - b[2].v;
}

STATIC_INLINE vec3f_t mulVec3Mat3x3f (vec3f_t v, Diderot_Mat3x3_t m)
{
    return vec3f(
	dot3f(v, column3x3f(m, 0)),
	dot3f(v, column3x3f(m, 1)),
	dot3f(v, column3x3f(m, 2)));
}

STATIC_INLINE vec3f_t mulMat3x3Vec3f (Diderot_Mat3x3_t m, vec3f_t v)
{
    return vec3f(dot3f(m[0].v, v), dot3f(m[1].v, v), dot3f(m[2].v, v));
}

STATIC_INLINE void mulMat3x3Mat3x3f (Diderot_Mat3x3_t dst, Diderot_Mat3x3_t m1, Diderot_Mat3x3_t m2)
{
    dst[0].v = vec3f(
	dot3f(m1[0].v, column3x3f(m2, 0)),
	dot3f(m1[0].v, column3x3f(m2, 1)),
	dot3f(m1[0].v, column3x3f(m2, 2)));
    dst[1].v = vec3f(
	dot3f(m1[1].v, column3x3f(m2, 0)),
	dot3f(m1[1].v, column3x3f(m2, 1)),
	dot3f(m1[1].v, column3x3f(m2, 2)));
    dst[2].v = vec3f(
	dot3f(m1[2].v, column3x3f(m2, 0)),
	dot3f(m1[2].v, column3x3f(m2, 1)),
	dot3f(m1[2].v, column3x3f(m2, 2)));
}

STATIC_INLINE void transpose3x3f (Diderot_Mat3x3_t dst, Diderot_Mat3x3_t src)
{
    dst[0].v = column3x3f(src, 0);
    dst[1].v = column3x3f(src, 1);
    dst[2].v = column3x3f(src, 2);
}

STATIC_INLINE float trace3x3f (Diderot_Mat3x3_t m)
{
    return m[0].r[0] + m[1].r[1] + m[2].r[2];
}

// The Frobenius norm of a matrix is the sqrt of the sum of the squares of the elements
STATIC_INLINE float norm3x3f (Diderot_Mat3x3_t m)
{
    return sqrtf(dot3f(m[0].v,m[0].v) + dot3f(m[1].v,m[1].v) + dot3f(m[2].v,m[2].v));
}


/********** 4x4 matrix functions **********/

STATIC_INLINE void copy4x4f (Diderot_Mat4x4_t dst, Diderot_Mat4x4_t src)
{
    dst[0].v = src[0].v;
    dst[1].v = src[1].v;
    dst[2].v = src[2].v;
    dst[3].v = src[3].v;
}

STATIC_INLINE vec4f_t column4x4f (Diderot_Mat4x4_t m, int i)
{
    return vec4f(m[0].r[i], m[1].r[i], m[2].r[i], m[3].r[i]);
}

STATIC_INLINE void transpose4x4f (Diderot_Mat4x4_t dst, Diderot_Mat4x4_t src)
{
    dst[0].v = column4x4f(src, 0);
    dst[1].v = column4x4f(src, 1);
    dst[2].v = column4x4f(src, 2);
    dst[3].v = column4x4f(src, 3);
}

STATIC_INLINE float trace4x4f (Diderot_Mat4x4_t m)
{
    return m[0].r[0] + m[1].r[1] + m[2].r[2] + m[3].r[3];
}

// The Frobenius norm of a matrix is the sqrt of the sum of the squares of the elements
STATIC_INLINE float norm4x4f (Diderot_Mat4x4_t m)
{
    return sqrt(dot4f(m[0].v,m[0].v) + dot4f(m[1].v,m[1].v) + dot4f(m[2].v,m[2].v) + dot4f(m[3].v,m[3].v));
}

#endif /* !_DIDEROT_INLINE_MATRIX_H_ */

root@smlnj-gforge.cs.uchicago.edu
ViewVC Help
Powered by ViewVC 1.0.0