(* copyright 1998 YALE FLINT PROJECT *) (* monnier@cs.yale.edu *) signature COLLECT = sig type info (* Collect information about variables and function uses. * The info is accumulated in the map `m' *) val collect : FLINT.fundec -> FLINT.fundec val get : FLINT.lvar -> info (* query functions *) val escaping : info -> bool (* non-call uses *) val called : info -> bool (* known call uses *) val usenb : info -> int (* nb of non-recursive uses *) val actuals : info -> (FLINT.value option list) (* constant args *) (* inc the "true=call,false=use" count *) val use : FLINT.value list option -> info -> unit (* dec the "true=call,false=use" count and call the function (and return true) if zero *) val unuse : (FLINT.lvar -> unit) -> bool -> FLINT.lvar -> bool (* transfer the counts of var1 to var2 *) val transfer : FLINT.lvar * FLINT.lvar -> unit (* add the counts of var1 to var2 *) (* val addto : info * info -> unit *) (* delete the last reference to a variable *) val kill : FLINT.lvar -> unit (* create a new var entry (SOME arg list if fun) initialized to zero *) val new : FLINT.lvar list option -> FLINT.lvar -> info (* when creating a new var. Used when alpha-renaming *) (* val copy : FLINT.lvar * FLINT.lvar -> unit *) (* fix up function to keep counts up-to-date when getting rid of code. * the arg is only called for *free* variables becoming dead. * the first function returned just unuses an exp, while the * second unuses a function declaration (f,args,body) *) val unuselexp : (FLINT.lvar -> unit) -> ((FLINT.lexp -> unit) * ((FLINT.lvar * FLINT.lvar list * FLINT.lexp) -> unit)) (* function to collect info about a newly created lexp *) val uselexp : FLINT.lexp -> unit (* function to copy (and collect info) a lexp *) val copylexp : FLINT.lvar IntmapF.intmap -> FLINT.lexp -> FLINT.lexp (* mostly useful for PPFlint *) val LVarString : FLINT.lvar -> string end (* Internal vs External references: * I started with a version that kept track separately of internal and external * uses. This has the advantage that if the extuses count goes to zero, we can * consider the function as dead. Without this, recursive functions can never * be recognized as dead during fcontract (they are still eliminated at the * beginning, tho). This looks nice at first, but poses problems: * - when you do simple inlining (just moving the body of the procedure), you * may inadvertently turn ext-uses into int-uses. This only happens when * inlining mutually recursive function, but this can be commen (thing of * when fcontract undoes a useless uncurrying or a recursive function). This * can be readily overcome by not using the `move body' optimization in * dangerous cases and do the full copy+kill instead. * - you have to keep track of what is inside what. The way I did it was to * have an 'inside' ref cell in each fun. That was a bad idea. The problem * stems from the fact that when you detect that a function becomes dead, * you have to somehow reset those `inside' ref cells to reflect the location * of the function before you can uncount its references. In most cases, this * is unnecessary, but it is necessary when undertaking a function mutually * recursive with a function in which you currently are when you detect the * function's death. * rather than fix this last point, I decided to get rid of the distinction. * This makes the code simpler and less bug-prone at the cost of slightly * increasing the number of fcontract passes required. *) structure Collect :> COLLECT = struct local structure F = FLINT structure M = Intmap structure FU = FlintUtil structure LV = LambdaVar structure PP = PPFlint in val say = Control.Print.say fun bug msg = ErrorMsg.impossible ("Collect: "^msg) fun buglexp (msg,le) = (say "\n"; PP.printLexp le; say " "; bug msg) fun bugval (msg,v) = (say "\n"; PP.printSval v; say " "; bug msg) fun ASSERT (true,_) = () | ASSERT (FALSE,msg) = bug ("assertion "^msg^" failed") exception UnexpectedTransfer datatype info (* for functions we keep track of calls and escaping uses *) = Fun of {calls: int ref, uses: int ref, args: (FLINT.lvar * (FLINT.value option)) option list ref} | Var of int ref (* for other vars, a simple use count is kept *) | Transfer of FLINT.lvar (* for vars which have been transfered *) exception NotFound val m : info M.intmap = M.new(128, NotFound) (* map related helper functions *) fun get lv = (M.map m lv) handle x as NotFound => (say ("Collect: ERROR: get unknown var "^ (LV.lvarName lv)^ ". Pretending dead...\n"); (* raise x; *) Var (ref 0)) fun LVarString lv = (LV.lvarName lv)^ ((case get lv of Var uses => "{"^(Int.toString (!uses))^"}" | Fun {calls,uses,...} => concat ["{", Int.toString (!uses), ",", Int.toString (!calls), "}"] | Transfer lv => "{->"^(LVarString lv)^"}") handle NotFound => "{?}") fun get' lv = case get lv of Transfer nlv => get' nlv | i => i fun new args lv = let val i = case args of SOME args => Fun{calls=ref 0, uses=ref 0, args=ref (map (fn a => SOME(a, NONE)) args)} | NONE => Var(ref 0) in M.add m (lv, i); i end (* adds the counts of lv1 to those of lv2 *) fun addto (info1,info2) = case info1 of Var uses1 => (case info2 of Var uses2 => uses2 := !uses2 + !uses1 | Fun {uses=uses2,...} => uses2 := !uses2 + !uses1 | Transfer _ => raise UnexpectedTransfer) | Fun {uses=uses1,calls=calls1,...} => (case info2 of Fun {uses=uses2,calls=calls2,...} => (uses2 := !uses2 + !uses1; calls2 := !calls2 + !calls1) | Var uses2 => uses2 := !uses2 + !uses1 | Transfer _ => raise UnexpectedTransfer) | Transfer _ => raise UnexpectedTransfer fun transfer (lv1,lv2) = (addto(get lv1, get lv2); (* note the transfer *) M.add m (lv1, Transfer lv2)) handle x => raise x fun inc ri = (ri := !ri + 1) fun dec ri = (ri := !ri - 1) (* - first list is list of formal args * - second is list of `up to know known arg' * - third is args of the current call. *) fun mergearg (NONE,a) = NONE | mergearg (SOME(fv,NONE),a) = if a = F.VAR fv then SOME(fv,NONE) else SOME(fv,SOME a) | mergearg (SOME(fv,SOME b),a) = if a = b orelse a = F.VAR fv then SOME(fv,SOME b) else NONE fun actuals (Var _) = bug "can't query actuals of a var" (* (LVarString lv) *) | actuals (Transfer lv) = raise UnexpectedTransfer | actuals (Fun{args,...}) = map (fn SOME(_,v) => v | _ => NONE) (!args) fun use call (Var uses) = inc uses | use call (Transfer lv) = raise UnexpectedTransfer | use call (Fun {uses,calls,args,...}) = case call of NONE => (inc uses; args := map (fn _ => NONE) (!args)) | SOME vals => (inc calls; inc uses; args := ListPair.map mergearg (!args, vals)) fun unuse undertaker call lv = let fun check uses = if !uses < 0 then bugval("decrementing too much", F.VAR lv) else if !uses = 0 then (undertaker lv; true) else false in case get' lv of Var uses => (dec uses; check uses) | Fun {uses,calls,...} => (dec uses; if (call andalso !calls > 0) then dec calls else ASSERT(!uses >= !calls, "unknown sanity"); check uses) | Transfer lv => bug "transfer" end handle x => raise x fun usenb (Fun{uses=uses,...} | Var uses) = !uses | usenb (Transfer _) = (raise UnexpectedTransfer; 0) fun used i = usenb i > 0 fun escaping (Fun{uses,calls,...}) = !uses > !calls | escaping (Var us) = !us > 0 (* arbitrary, but hopefully "safe" *) | escaping (Transfer lv) = raise UnexpectedTransfer fun called (Fun{calls,...}) = !calls > 0 | called (Var us) = false (* arbitrary, but consistent with escaping *) | called (Transfer lv) = raise UnexpectedTransfer (* Ideally, we should check that usenb = 1, but we may have been a bit * conservative when keeping the counts uptodate *) fun kill lv = (ASSERT(usenb(get' lv) >= 1, "usenb "^(LVarString lv)^" >= 1 "); M.rmv m lv) (* ********************************************************************** *) (* ********************************************************************** *) datatype usage = All | None | Some of bool list fun usage bs = let fun ua [] = All | ua (false::_) = Some bs | ua (true::bs) = ua bs fun un [] = None | un (true::_) = Some bs | un (false::bs) = un bs in case bs of true::bs => ua bs | false::bs => un bs | [] => None end fun impurePO po = true (* if a PrimOP is pure or not *) val census = let (* val use = if inc then use else unuse *) fun call args lv = use args (get' lv) val use = fn F.VAR lv => use NONE (get' lv) | _ => () fun newv lv = new NONE lv fun newf args lv = new args lv fun id x = x fun impurePO po = true (* if a PrimOP is pure or not *) (* here, the use resembles a call, but it's safer to consider it as a use *) fun cpo (NONE:F.dict option,po,lty,tycs) = () | cpo (SOME{default,table},po,lty,tycs) = (use (F.VAR default); app (use o F.VAR o #2) table) fun cdcon (s,Access.EXN(Access.LVAR lv),lty) = use (F.VAR lv) | cdcon _ = () (* the actual function: * `uvs' is an optional list of booleans representing which of * the return values are actually used *) fun cexp uvs lexp = (case lexp of F.RET vs => app use vs (* (case uvs *) (* of SOME uvs => (* only count vals that are actually used *) *) (* app (fn(v,uv)=>if uv then use v else ()) (ListPair.zip(vs,uvs)) *) (* | NONE => app use vs) *) | F.LET (lvs,le1,le2) => let val lvsi = map newv lvs in cexp uvs le2; cexp (usage(map used lvsi)) le1 end | F.FIX (fs,le) => let val fs = map (fn (_,f,args,body) => (newf (SOME(map #1 args)) f,args,body)) fs fun cfun (_,args,body) = (* census of a fundec *) (app (fn (v,t) => ignore(newv v)) args; cexp All body) fun cfix fs = (* census of a list of fundecs *) let val (ufs,nfs) = List.partition (used o #1) fs in if List.null ufs then () else (app cfun ufs; cfix nfs) end in cexp uvs le; cfix fs end | F.APP (F.VAR f,vs) => (call (SOME vs) f; app use vs) | F.TFN ((tf,args,body),le) => let val tfi = newf NONE tf in cexp uvs le; if used tfi then cexp All body else () end | F.TAPP (F.VAR tf,tycs) => call NONE tf | F.SWITCH (v,cs,arms,def) => (use v; Option.map (cexp uvs) def; app (fn (F.DATAcon(dc,_,lv),le) => (cdcon dc; newv lv; cexp uvs le) | (_,le) => cexp uvs le) arms) | F.CON (dc,_,v,lv,le) => let val lvi = newv lv in cdcon dc; cexp uvs le; if used lvi then use v else () end | F.RECORD (_,vs,lv,le) => let val lvi = newv lv in cexp uvs le; if used lvi then app use vs else () end | F.SELECT (v,_,lv,le) => let val lvi = newv lv in cexp uvs le; if used lvi then use v else () end | F.RAISE (v,_) => use v | F.HANDLE (le,v) => (use v; cexp uvs le) | F.BRANCH (po,vs,le1,le2) => (app use vs; cpo po; cexp uvs le1; cexp uvs le2) | F.PRIMOP (po,vs,lv,le) => let val lvi = newv lv in cexp uvs le; if impurePO po orelse used lvi then (cpo po; app use vs) else () end | le => buglexp("unexpected lexp", le)) handle x => raise x in cexp end (* The code is almost the same for uncounting, except that calling * undertaker should not be done for non-free variables. For that we * artificially increase the usage count of each variable when it's defined * (accomplished via the "def" calls) * so that its counter never reaches 0 while processing its scope. * Once its scope has been processed, we can completely get rid of * the variable and corresponding info (after verifying that the count * is indeed exactly 1 (accomplished by the "kill" calls) *) fun unuselexp undertaker = let (* val use = if inc then use else unuse *) fun uncall lv = ignore(unuse undertaker true lv) val unuse = fn F.VAR lv => ignore(unuse undertaker false lv) | _ => () fun def lv = (use NONE (get lv)) handle x => raise x fun id x = x fun cpo (NONE:F.dict option,po,lty,tycs) = () | cpo (SOME{default,table},po,lty,tycs) = (unuse(F.VAR default); app (unuse o F.VAR o #2) table) fun cdcon (s,Access.EXN(Access.LVAR lv),lty) = unuse(F.VAR lv) | cdcon _ = () fun cfun (f,args,body) = (* census of a fundec *) (app def args; cexp body; app kill args) handle x => raise x and cexp lexp = (case lexp of F.RET vs => app unuse vs | F.LET (lvs,le1,le2) => (app def lvs; cexp le2; cexp le1; app kill lvs) | F.FIX (fs,le) => let val usedfs = (List.filter ((used o get o #2) handle x => raise x) fs) in app (def o #2) fs; cexp le; app (fn (_,lv,args,le) => cfun(lv, map #1 args, le)) usedfs; app (kill o #2) fs end | F.APP (F.VAR f,vs) => (uncall f; app unuse vs) | F.TFN ((tf,args,body),le) => (if used(get tf) then cexp body else (); def tf; cexp le; kill tf) | F.TAPP (F.VAR tf,tycs) => uncall tf | F.SWITCH (v,cs,arms,default) => (unuse v; Option.map cexp default; (* here we don't absolutely have to keep track of vars bound within * each arm since these vars can't be eliminated anyway *) app (fn (F.DATAcon(dc,_,lv),le) => (cdcon dc; def lv; cexp le; kill lv) | (_,le) => cexp le) arms) | F.CON (dc,_,v,lv,le) => (cdcon dc; if used(get lv) then unuse v else (); def lv; cexp le; kill lv) | F.RECORD (_,vs,lv,le) => (if used(get lv) then app unuse vs else (); def lv; cexp le; kill lv) | F.SELECT (v,_,lv,le) => (if used(get lv) then unuse v else (); def lv; cexp le; kill lv) | F.RAISE (v,_) => unuse v | F.HANDLE (le,v) => (unuse v; cexp le) | F.BRANCH (po,vs,le1,le2) => (app unuse vs; cpo po; cexp le1; cexp le2) | F.PRIMOP (po,vs,lv,le) => (if impurePO po orelse used(get lv) then (cpo po; app unuse vs) else (); def lv; cexp le; kill lv) | le => buglexp("unexpected lexp", le)) handle x => raise x in (cexp, cfun) end val uselexp = census All fun copylexp alpha le = let val nle = FU.copy alpha le in uselexp nle; nle end fun collect (fdec as (_,f,_,_)) = ((* say "Entering Collect...\n"; *) M.clear m; (* start from a fresh state *) PP.LVarString := LVarString; uselexp (F.FIX([fdec], F.RET[F.VAR f])); (* say "...Collect Done.\n"; *) fdec) end end
Click to toggle
does not end with </html> tag
does not end with </body> tag
The output has ended thus: uselexp (F.FIX([fdec], F.RET[F.VAR f])); (* say "...Collect Done.\n"; *) fdec) end end