1 : |
jhr |
1584 |
/*! \file bmark-teem.c
|
2 : |
|
|
*
|
3 : |
|
|
* \author Gordon Kindlmann
|
4 : |
|
|
*/
|
5 : |
|
|
|
6 : |
glk |
1582 |
#include <stdio.h>
|
7 : |
|
|
#include <math.h>
|
8 : |
|
|
#include "teem/nrrd.h"
|
9 : |
|
|
#include "teem/gage.h"
|
10 : |
|
|
#include "teem/ell.h"
|
11 : |
|
|
|
12 : |
jhr |
1597 |
extern int _gageProbe(gageContext *ctx, double _xi, double _yi, double _zi, double _si);
|
13 : |
glk |
1591 |
|
14 : |
jhr |
1586 |
#include "teem-defs.h"
|
15 : |
jhr |
1584 |
|
16 : |
glk |
1591 |
#define ROOT_TRIPLE 2 /* ell_cubic_root_triple */
|
17 : |
|
|
#define ROOT_SINGLE_DOUBLE 3 /* ell_cubic_root_single_double */
|
18 : |
|
|
#define ROOT_THREE 4 /* ell_cubic_root_three */
|
19 : |
|
|
|
20 : |
|
|
#define ABS(a) (((a) > 0.0f ? (a) : -(a)))
|
21 : |
|
|
#define VEC_SET(v, a, b, c) \
|
22 : |
|
|
((v)[0] = (a), (v)[1] = (b), (v)[2] = (c))
|
23 : |
|
|
#define VEC_DOT(v1, v2) \
|
24 : |
|
|
((v1)[0]*(v2)[0] + (v1)[1]*(v2)[1] + (v1)[2]*(v2)[2])
|
25 : |
|
|
#define VEC_CROSS(v3, v1, v2) \
|
26 : |
|
|
((v3)[0] = (v1)[1]*(v2)[2] - (v1)[2]*(v2)[1], \
|
27 : |
|
|
(v3)[1] = (v1)[2]*(v2)[0] - (v1)[0]*(v2)[2], \
|
28 : |
|
|
(v3)[2] = (v1)[0]*(v2)[1] - (v1)[1]*(v2)[0])
|
29 : |
|
|
#define VEC_ADD(v1, v2) \
|
30 : |
|
|
((v1)[0] += (v2)[0], \
|
31 : |
|
|
(v1)[1] += (v2)[1], \
|
32 : |
|
|
(v1)[2] += (v2)[2])
|
33 : |
|
|
#define VEC_SUB(v1, v2) \
|
34 : |
|
|
((v1)[0] -= (v2)[0], \
|
35 : |
|
|
(v1)[1] -= (v2)[1], \
|
36 : |
|
|
(v1)[2] -= (v2)[2])
|
37 : |
|
|
#define VEC_SCL(v1, s) \
|
38 : |
|
|
((v1)[0] *= (s), \
|
39 : |
|
|
(v1)[1] *= (s), \
|
40 : |
|
|
(v1)[2] *= (s))
|
41 : |
|
|
#define VEC_LEN(v) (SQRT(VEC_DOT(v,v)))
|
42 : |
|
|
#define VEC_NORM(v, len) ((len) = VEC_LEN(v), VEC_SCL(v, 1.0/len))
|
43 : |
|
|
#define VEC_SCL_SUB(v1, s, v2) \
|
44 : |
|
|
((v1)[0] -= (s)*(v2)[0], \
|
45 : |
|
|
(v1)[1] -= (s)*(v2)[1], \
|
46 : |
|
|
(v1)[2] -= (s)*(v2)[2])
|
47 : |
|
|
#define VEC_COPY(v1, v2) \
|
48 : |
|
|
((v1)[0] = (v2)[0], \
|
49 : |
|
|
(v1)[1] = (v2)[1], \
|
50 : |
|
|
(v1)[2] = (v2)[2])
|
51 : |
|
|
|
52 : |
|
|
#if 1
|
53 : |
|
|
# define REAL float
|
54 : |
|
|
# define ATAN2 atan2f
|
55 : |
|
|
# define SQRT sqrtf
|
56 : |
|
|
# define COS cosf
|
57 : |
|
|
# define SIN sinf
|
58 : |
|
|
#else
|
59 : |
|
|
# define REAL double
|
60 : |
|
|
# define ATAN2 atan2
|
61 : |
|
|
# define SQRT sqrt
|
62 : |
|
|
# define COS cos
|
63 : |
|
|
# define SIN sin
|
64 : |
|
|
#endif
|
65 : |
|
|
|
66 : |
|
|
/*
|
67 : |
|
|
** All the three given vectors span only a 2D space, and this finds
|
68 : |
|
|
** the normal to that plane. Simply sums up all the pair-wise
|
69 : |
|
|
** cross-products to get a good estimate. Trick is getting the cross
|
70 : |
|
|
** products to line up before summing.
|
71 : |
|
|
*/
|
72 : |
jhr |
1597 |
static inline void nullspace1(REAL ret[3], const REAL r0[3], const REAL r1[3], const REAL r2[3])
|
73 : |
|
|
{
|
74 : |
glk |
1591 |
REAL crs[3];
|
75 : |
|
|
|
76 : |
|
|
/* ret = r0 x r1 */
|
77 : |
|
|
VEC_CROSS(ret, r0, r1);
|
78 : |
|
|
/* crs = r1 x r2 */
|
79 : |
|
|
VEC_CROSS(crs, r1, r2);
|
80 : |
|
|
/* ret += crs or ret -= crs; whichever makes ret longer */
|
81 : |
|
|
if (VEC_DOT(ret, crs) > 0) {
|
82 : |
|
|
VEC_ADD(ret, crs);
|
83 : |
|
|
} else {
|
84 : |
|
|
VEC_SUB(ret, crs);
|
85 : |
|
|
}
|
86 : |
|
|
/* crs = r0 x r2 */
|
87 : |
|
|
VEC_CROSS(crs, r0, r2);
|
88 : |
|
|
/* ret += crs or ret -= crs; whichever makes ret longer */
|
89 : |
|
|
if (VEC_DOT(ret, crs) > 0) {
|
90 : |
|
|
VEC_ADD(ret, crs);
|
91 : |
|
|
} else {
|
92 : |
|
|
VEC_SUB(ret, crs);
|
93 : |
|
|
}
|
94 : |
|
|
|
95 : |
|
|
return;
|
96 : |
glk |
1582 |
}
|
97 : |
|
|
|
98 : |
glk |
1591 |
/*
|
99 : |
|
|
** All vectors are in the same 1D space, we have to find two
|
100 : |
|
|
** mutually vectors perpendicular to that span
|
101 : |
|
|
*/
|
102 : |
jhr |
1597 |
static inline void nullspace2(REAL reta[3], REAL retb[3], const REAL r0[3], const REAL r1[3], const REAL r2[3])
|
103 : |
|
|
{
|
104 : |
glk |
1591 |
REAL sqr[3], sum[3];
|
105 : |
|
|
int idx;
|
106 : |
|
|
|
107 : |
|
|
VEC_COPY(sum, r0);
|
108 : |
|
|
if (VEC_DOT(sum, r1) > 0) {
|
109 : |
|
|
VEC_ADD(sum, r1);
|
110 : |
|
|
} else {
|
111 : |
|
|
VEC_SUB(sum, r1);
|
112 : |
|
|
}
|
113 : |
|
|
if (VEC_DOT(sum, r2) > 0) {
|
114 : |
|
|
VEC_ADD(sum, r2);
|
115 : |
|
|
} else {
|
116 : |
|
|
VEC_SUB(sum, r2);
|
117 : |
|
|
}
|
118 : |
|
|
/* find largest component, to get most stable expression for a
|
119 : |
|
|
perpendicular vector */
|
120 : |
|
|
sqr[0] = sum[0]*sum[0];
|
121 : |
|
|
sqr[1] = sum[1]*sum[1];
|
122 : |
|
|
sqr[2] = sum[2]*sum[2];
|
123 : |
|
|
idx = 0;
|
124 : |
|
|
if (sqr[0] < sqr[1])
|
125 : |
|
|
idx = 1;
|
126 : |
|
|
if (sqr[idx] < sqr[2])
|
127 : |
|
|
idx = 2;
|
128 : |
|
|
/* reta will be perpendicular to sum */
|
129 : |
|
|
if (0 == idx) {
|
130 : |
|
|
VEC_SET(reta, sum[1] - sum[2], -sum[0], sum[0]);
|
131 : |
|
|
} else if (1 == idx) {
|
132 : |
|
|
VEC_SET(reta, -sum[1], sum[0] - sum[2], sum[1]);
|
133 : |
|
|
} else {
|
134 : |
|
|
VEC_SET(reta, -sum[2], sum[2], sum[0] - sum[1]);
|
135 : |
|
|
}
|
136 : |
|
|
/* and now retb will be perpendicular to both reta and sum */
|
137 : |
|
|
VEC_CROSS(retb, reta, sum);
|
138 : |
|
|
return;
|
139 : |
|
|
}
|
140 : |
|
|
|
141 : |
|
|
int
|
142 : |
|
|
evals_evecs(REAL eval[3], REAL evec[9],
|
143 : |
|
|
const REAL _M00, const REAL _M01, const REAL _M02,
|
144 : |
|
|
const REAL _M11, const REAL _M12,
|
145 : |
|
|
const REAL _M22) {
|
146 : |
|
|
REAL r0[3], r1[3], r2[3], crs[3], len, dot;
|
147 : |
|
|
|
148 : |
|
|
REAL mean, norm, rnorm, Q, R, QQQ, D, theta,
|
149 : |
|
|
M00, M01, M02, M11, M12, M22;
|
150 : |
|
|
REAL epsilon = 1.0E-12;
|
151 : |
|
|
int roots;
|
152 : |
|
|
|
153 : |
|
|
/* copy the given matrix elements */
|
154 : |
|
|
M00 = _M00;
|
155 : |
|
|
M01 = _M01;
|
156 : |
|
|
M02 = _M02;
|
157 : |
|
|
M11 = _M11;
|
158 : |
|
|
M12 = _M12;
|
159 : |
|
|
M22 = _M22;
|
160 : |
|
|
|
161 : |
|
|
/*
|
162 : |
|
|
** subtract out the eigenvalue mean (will add back to evals later);
|
163 : |
|
|
** helps with numerical stability
|
164 : |
|
|
*/
|
165 : |
|
|
mean = (M00 + M11 + M22)/3.0;
|
166 : |
|
|
M00 -= mean;
|
167 : |
|
|
M11 -= mean;
|
168 : |
|
|
M22 -= mean;
|
169 : |
|
|
|
170 : |
|
|
/*
|
171 : |
|
|
** divide out L2 norm of eigenvalues (will multiply back later);
|
172 : |
|
|
** this too seems to help with stability
|
173 : |
|
|
*/
|
174 : |
|
|
norm = SQRT(M00*M00 + 2*M01*M01 + 2*M02*M02 +
|
175 : |
|
|
M11*M11 + 2*M12*M12 +
|
176 : |
|
|
M22*M22);
|
177 : |
|
|
rnorm = norm ? 1.0/norm : 1.0;
|
178 : |
|
|
M00 *= rnorm;
|
179 : |
|
|
M01 *= rnorm;
|
180 : |
|
|
M02 *= rnorm;
|
181 : |
|
|
M11 *= rnorm;
|
182 : |
|
|
M12 *= rnorm;
|
183 : |
|
|
M22 *= rnorm;
|
184 : |
|
|
|
185 : |
|
|
/* this code is a mix of prior Teem code and ideas from Eberly's
|
186 : |
|
|
"Eigensystems for 3 x 3 Symmetric Matrices (Revisited)" */
|
187 : |
|
|
Q = (M01*M01 + M02*M02 + M12*M12 - M00*M11 - M00*M22 - M11*M22)/3.0;
|
188 : |
|
|
QQQ = Q*Q*Q;
|
189 : |
|
|
R = (M00*M11*M22 + M02*(2*M01*M12 - M02*M11)
|
190 : |
|
|
- M00*M12*M12 - M01*M01*M22)/2.0;
|
191 : |
|
|
D = QQQ - R*R;
|
192 : |
|
|
if (D > epsilon) {
|
193 : |
|
|
/* three distinct roots- this is the most common case */
|
194 : |
|
|
REAL mm, ss, cc;
|
195 : |
|
|
theta = ATAN2(SQRT(D), R)/3.0;
|
196 : |
|
|
mm = SQRT(Q);
|
197 : |
|
|
ss = SIN(theta);
|
198 : |
|
|
cc = COS(theta);
|
199 : |
|
|
eval[0] = 2*mm*cc;
|
200 : |
|
|
eval[1] = mm*(-cc + SQRT(3.0)*ss);
|
201 : |
|
|
eval[2] = mm*(-cc - SQRT(3.0)*ss);
|
202 : |
|
|
roots = ROOT_THREE;
|
203 : |
|
|
/* else D is near enough to zero */
|
204 : |
|
|
} else if (R < -epsilon || epsilon < R) {
|
205 : |
|
|
REAL U;
|
206 : |
|
|
/* one double root and one single root */
|
207 : |
|
|
U = airCbrt(R); /* cube root function */
|
208 : |
|
|
if (U > 0) {
|
209 : |
|
|
eval[0] = 2*U;
|
210 : |
|
|
eval[1] = -U;
|
211 : |
|
|
eval[2] = -U;
|
212 : |
|
|
} else {
|
213 : |
|
|
eval[0] = -U;
|
214 : |
|
|
eval[1] = -U;
|
215 : |
|
|
eval[2] = 2*U;
|
216 : |
|
|
}
|
217 : |
|
|
roots = ROOT_SINGLE_DOUBLE;
|
218 : |
|
|
} else {
|
219 : |
|
|
/* a triple root! */
|
220 : |
|
|
eval[0] = eval[1] = eval[2] = 0.0;
|
221 : |
|
|
roots = ROOT_TRIPLE;
|
222 : |
|
|
}
|
223 : |
|
|
|
224 : |
|
|
/* r0, r1, r2 are the vectors we manipulate to
|
225 : |
|
|
find the nullspaces of M - lambda*I */
|
226 : |
|
|
VEC_SET(r0, 0.0, M01, M02);
|
227 : |
|
|
VEC_SET(r1, M01, 0.0, M12);
|
228 : |
|
|
VEC_SET(r2, M02, M12, 0.0);
|
229 : |
|
|
if (ROOT_THREE == roots) {
|
230 : |
|
|
r0[0] = M00 - eval[0]; r1[1] = M11 - eval[0]; r2[2] = M22 - eval[0];
|
231 : |
|
|
nullspace1(evec+0, r0, r1, r2);
|
232 : |
|
|
r0[0] = M00 - eval[1]; r1[1] = M11 - eval[1]; r2[2] = M22 - eval[1];
|
233 : |
|
|
nullspace1(evec+3, r0, r1, r2);
|
234 : |
|
|
r0[0] = M00 - eval[2]; r1[1] = M11 - eval[2]; r2[2] = M22 - eval[2];
|
235 : |
|
|
nullspace1(evec+6, r0, r1, r2);
|
236 : |
|
|
} else if (ROOT_SINGLE_DOUBLE == roots) {
|
237 : |
|
|
if (eval[1] == eval[2]) {
|
238 : |
|
|
/* one big (eval[0]) , two small (eval[1,2]) */
|
239 : |
|
|
r0[0] = M00 - eval[0]; r1[1] = M11 - eval[0]; r2[2] = M22 - eval[0];
|
240 : |
|
|
nullspace1(evec+0, r0, r1, r2);
|
241 : |
|
|
r0[0] = M00 - eval[1]; r1[1] = M11 - eval[1]; r2[2] = M22 - eval[1];
|
242 : |
|
|
nullspace2(evec+3, evec+6, r0, r1, r2);
|
243 : |
|
|
}
|
244 : |
|
|
else {
|
245 : |
|
|
/* two big (eval[0,1]), one small (eval[2]) */
|
246 : |
|
|
r0[0] = M00 - eval[0]; r1[1] = M11 - eval[0]; r2[2] = M22 - eval[0];
|
247 : |
|
|
nullspace2(evec+0, evec+3, r0, r1, r2);
|
248 : |
|
|
r0[0] = M00 - eval[2]; r1[1] = M11 - eval[2]; r2[2] = M22 - eval[2];
|
249 : |
|
|
nullspace1(evec+6, r0, r1, r2);
|
250 : |
|
|
}
|
251 : |
|
|
} else {
|
252 : |
|
|
/* ROOT_TRIPLE == roots; use any basis for eigenvectors */
|
253 : |
|
|
VEC_SET(evec+0, 1, 0, 0);
|
254 : |
|
|
VEC_SET(evec+3, 0, 1, 0);
|
255 : |
|
|
VEC_SET(evec+6, 0, 0, 1);
|
256 : |
|
|
}
|
257 : |
|
|
/* we always make sure its really orthonormal; keeping fixed the
|
258 : |
|
|
eigenvector associated with the largest-magnitude eigenvalue */
|
259 : |
|
|
if (ABS(eval[0]) > ABS(eval[2])) {
|
260 : |
|
|
/* normalize evec+0 but don't move it */
|
261 : |
|
|
VEC_NORM(evec+0, len);
|
262 : |
|
|
dot = VEC_DOT(evec+0, evec+3); VEC_SCL_SUB(evec+3, dot, evec+0);
|
263 : |
|
|
VEC_NORM(evec+3, len);
|
264 : |
|
|
ELL_3V_CROSS(evec+6, evec+0, evec+3);
|
265 : |
|
|
} else {
|
266 : |
|
|
/* normalize evec+6 but don't move it */
|
267 : |
|
|
VEC_NORM(evec+6, len);
|
268 : |
|
|
dot = VEC_DOT(evec+6, evec+3); VEC_SCL_SUB(evec+3, dot, evec+6);
|
269 : |
|
|
VEC_NORM(evec+3, len);
|
270 : |
|
|
ELL_3V_CROSS(evec+0, evec+3, evec+6);
|
271 : |
|
|
}
|
272 : |
|
|
|
273 : |
|
|
/* multiply back by eigenvalue L2 norm */
|
274 : |
|
|
eval[0] /= rnorm;
|
275 : |
|
|
eval[1] /= rnorm;
|
276 : |
|
|
eval[2] /= rnorm;
|
277 : |
|
|
|
278 : |
|
|
/* add back in the eigenvalue mean */
|
279 : |
|
|
eval[0] += mean;
|
280 : |
|
|
eval[1] += mean;
|
281 : |
|
|
eval[2] += mean;
|
282 : |
|
|
|
283 : |
|
|
return roots;
|
284 : |
|
|
}
|
285 : |
|
|
|
286 : |
jhr |
1597 |
int main (int argc, const char *argv[])
|
287 : |
|
|
{
|
288 : |
glk |
1582 |
hestOpt *hopt=NULL;
|
289 : |
|
|
hestParm *hparm;
|
290 : |
|
|
airArray *mop;
|
291 : |
|
|
const char *me;
|
292 : |
|
|
|
293 : |
|
|
#define DATA_IN_STR "../../data/lungcrop.nrrd"
|
294 : |
|
|
unsigned int gridPoints, stepsMax;
|
295 : |
|
|
Nrrd *nin, *nout, *npos;
|
296 : |
|
|
char *err, *outS;
|
297 : |
|
|
float epsilon;
|
298 : |
glk |
1589 |
double travelMax, strnMin;
|
299 : |
glk |
1582 |
|
300 : |
|
|
mop = airMopNew();
|
301 : |
|
|
hparm = hestParmNew();
|
302 : |
|
|
airMopAdd(mop, hparm, (airMopper)hestParmFree, airMopAlways);
|
303 : |
|
|
nout = nrrdNew();
|
304 : |
|
|
airMopAdd(mop, nout, (airMopper)nrrdNuke, airMopAlways);
|
305 : |
|
|
|
306 : |
|
|
hparm->noArgsIsNoProblem = AIR_TRUE;
|
307 : |
|
|
me = argv[0];
|
308 : |
|
|
hestOptAdd(&hopt, "gridSize", "grid points", airTypeUInt, 1, 1,
|
309 : |
|
|
&gridPoints, "120",
|
310 : |
|
|
"number of points along volume edge");
|
311 : |
|
|
hestOptAdd(&hopt, "stepsMax", "# iters", airTypeUInt, 1, 1,
|
312 : |
glk |
1589 |
&stepsMax, "30",
|
313 : |
glk |
1582 |
"# iterations allowed for feature detection");
|
314 : |
|
|
hestOptAdd(&hopt, "epsilon", "convg", airTypeFloat, 1, 1,
|
315 : |
glk |
1589 |
&epsilon, "0.001", "convergence threshold");
|
316 : |
|
|
hestOptAdd(&hopt, "travelMax", "tmax", airTypeDouble, 1, 1,
|
317 : |
|
|
&travelMax, "5.0", "max on travel");
|
318 : |
|
|
hestOptAdd(&hopt, "strnMin", "smin", airTypeDouble, 1, 1,
|
319 : |
|
|
&strnMin, "150", "minimum significant features strength");
|
320 : |
|
|
hestOptAdd(&hopt, "o", "out", airTypeString, 1, 1,
|
321 : |
|
|
&outS, "ridge-pos.nrrd", "output filename");
|
322 : |
glk |
1582 |
|
323 : |
|
|
hestParseOrDie(hopt, argc-1, argv+1, hparm,
|
324 : |
|
|
me, "ridge3d", AIR_TRUE, AIR_TRUE, AIR_TRUE);
|
325 : |
|
|
airMopAdd(mop, hopt, (airMopper)hestOptFree, airMopAlways);
|
326 : |
|
|
airMopAdd(mop, hopt, (airMopper)hestParseFree, airMopAlways);
|
327 : |
|
|
|
328 : |
|
|
nin = nrrdNew();
|
329 : |
|
|
airMopAdd(mop, nin, (airMopper)nrrdNuke, airMopAlways);
|
330 : |
|
|
if (nrrdLoad(nin, DATA_IN_STR, NULL)) {
|
331 : |
|
|
airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
|
332 : |
|
|
fprintf(stderr, "Trouble reading:\n%s", err);
|
333 : |
|
|
airMopError(mop);
|
334 : |
|
|
return 1;
|
335 : |
|
|
}
|
336 : |
|
|
|
337 : |
|
|
gageContext *ctx;
|
338 : |
|
|
gagePerVolume *pvl;
|
339 : |
|
|
double kparm[NRRD_KERNEL_PARMS_NUM] = {0.0};
|
340 : |
|
|
ctx = gageContextNew();
|
341 : |
|
|
airMopAdd(mop, ctx, (airMopper)gageContextNix, airMopAlways);
|
342 : |
|
|
pvl = gagePerVolumeNew(ctx, nin, gageKindScl);
|
343 : |
|
|
if (gagePerVolumeAttach(ctx, pvl)
|
344 : |
|
|
|| gageKernelSet(ctx, gageKernel00, nrrdKernelBSpline3, kparm)
|
345 : |
|
|
|| gageKernelSet(ctx, gageKernel11, nrrdKernelBSpline3D, kparm)
|
346 : |
|
|
|| gageKernelSet(ctx, gageKernel22, nrrdKernelBSpline3DD, kparm)
|
347 : |
|
|
|| gageQueryItemOn(ctx, pvl, gageSclGradVec)
|
348 : |
|
|
|| gageQueryItemOn(ctx, pvl, gageSclHessian)
|
349 : |
|
|
|| gageUpdate(ctx)) {
|
350 : |
|
|
airMopAdd(mop, err = biffGetDone(GAGE), airFree, airMopAlways);
|
351 : |
glk |
1589 |
fprintf(stderr, "%s: Trouble setting up gage context:\n%s", me, err);
|
352 : |
glk |
1582 |
airMopError(mop);
|
353 : |
|
|
return 1;
|
354 : |
|
|
}
|
355 : |
glk |
1589 |
|
356 : |
glk |
1582 |
npos = nrrdNew();
|
357 : |
|
|
airMopAdd(mop, npos, (airMopper)nrrdNuke, airMopAlways);
|
358 : |
glk |
1589 |
if (nrrdAlloc_va(npos, nrrdTypeFloat, 2,
|
359 : |
|
|
AIR_CAST(size_t, 3),
|
360 : |
|
|
AIR_CAST(size_t, gridPoints*gridPoints*gridPoints))) {
|
361 : |
|
|
airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
|
362 : |
|
|
fprintf(stderr, "%s: Trouble setting up nrrd output:\n%s", me, err);
|
363 : |
|
|
airMopError(mop);
|
364 : |
|
|
return 1;
|
365 : |
|
|
}
|
366 : |
|
|
float *pos = AIR_CAST(float *, npos->data);
|
367 : |
glk |
1582 |
|
368 : |
glk |
1589 |
int ui, vi, wi, si;
|
369 : |
glk |
1591 |
float xx, yy, zz, wpos[4], ipos[4];
|
370 : |
|
|
const double *grad, *hess;
|
371 : |
|
|
REAL eval[3], evec[9];
|
372 : |
glk |
1589 |
unsigned int posIdx = 0;
|
373 : |
|
|
if (!( (grad = gageAnswerPointer(ctx, pvl, gageSclGradVec))
|
374 : |
|
|
&& (hess = gageAnswerPointer(ctx, pvl, gageSclHessian))
|
375 : |
|
|
)) {
|
376 : |
|
|
fprintf(stderr, "%s: got null answer pointers", me);
|
377 : |
|
|
airMopError(mop);
|
378 : |
|
|
return 1;
|
379 : |
|
|
}
|
380 : |
glk |
1591 |
wpos[3] = 1.0;
|
381 : |
|
|
/*
|
382 : |
|
|
printf("%s: hit return\n", me);
|
383 : |
|
|
fgetc(stdin);
|
384 : |
|
|
printf("%s: here we go\n", me);
|
385 : |
|
|
*/
|
386 : |
|
|
|
387 : |
glk |
1601 |
double t0 = airTime(); // start timing
|
388 : |
glk |
1591 |
|
389 : |
glk |
1589 |
for (wi=0; wi<gridPoints; wi++) {
|
390 : |
|
|
zz = AIR_AFFINE(-0.5, wi, gridPoints-0.5, -188.0000, -188.0000 + 140.0*0.5); /* HEY */
|
391 : |
|
|
for (vi=0; vi<gridPoints; vi++) {
|
392 : |
|
|
yy = AIR_AFFINE(-0.5, vi, gridPoints-0.5, -175.8792, -175.8792 + 200.0*0.5); /* HEY */
|
393 : |
|
|
for (ui=0; ui<gridPoints; ui++) {
|
394 : |
|
|
xx = AIR_AFFINE(-0.5, ui, gridPoints-0.5, 21.6401, 21.6401 + 140.0*0.5); /* HEY */
|
395 : |
glk |
1591 |
ELL_3V_SET(wpos, xx, yy, zz);
|
396 : |
|
|
|
397 : |
|
|
REAL travel = 0.0, proj1[9], proj2[9], proj[9],
|
398 : |
glk |
1589 |
dir[3], len, fdd, sdd, del;
|
399 : |
jhr |
1584 |
|
400 : |
glk |
1591 |
#define PROBE(worldPos) \
|
401 : |
|
|
ELL_4MV_MUL(ipos, ctx->shape->WtoI, worldPos); \
|
402 : |
|
|
if ( ipos[0] <= 2 || ipos[0] >= 137 \
|
403 : |
|
|
|| ipos[1] <= 2 || ipos[1] >= 197 \
|
404 : |
|
|
|| ipos[2] <= 2 || ipos[2] >= 137 ) { \
|
405 : |
glk |
1589 |
/* if not inside */ \
|
406 : |
|
|
break; \
|
407 : |
glk |
1591 |
} \
|
408 : |
|
|
_gageProbe(ctx, ipos[0], ipos[1], ipos[2], 0.0); \
|
409 : |
|
|
evals_evecs(eval, evec, \
|
410 : |
|
|
hess[0], hess[1], hess[2], \
|
411 : |
|
|
hess[4], hess[5], \
|
412 : |
|
|
hess[8])
|
413 : |
|
|
|
414 : |
glk |
1589 |
for (si=0; si<stepsMax; si++) {
|
415 : |
|
|
if (travel > travelMax) {
|
416 : |
|
|
break;
|
417 : |
|
|
}
|
418 : |
glk |
1591 |
PROBE(wpos);
|
419 : |
glk |
1589 |
if (!ELL_3V_LEN(grad)) {
|
420 : |
|
|
break;
|
421 : |
|
|
}
|
422 : |
|
|
ELL_3MV_OUTER(proj1, evec + 1*3, evec + 1*3);
|
423 : |
|
|
ELL_3MV_OUTER(proj2, evec + 2*3, evec + 2*3);
|
424 : |
|
|
ELL_3M_ADD2(proj, proj1, proj2);
|
425 : |
|
|
ELL_3MV_MUL(dir, proj, grad);
|
426 : |
glk |
1591 |
VEC_NORM(dir, len);
|
427 : |
glk |
1589 |
if (!len) {
|
428 : |
|
|
break;
|
429 : |
|
|
}
|
430 : |
|
|
fdd = ELL_3V_DOT(grad, dir);
|
431 : |
|
|
sdd = ELL_3MV_CONTR(hess, dir);
|
432 : |
|
|
del = sdd >= 0 ? 0.1 : -fdd/sdd;
|
433 : |
|
|
if (del < epsilon) {
|
434 : |
|
|
if (-eval[1] >= strnMin) {
|
435 : |
|
|
/* converged! save point */
|
436 : |
glk |
1591 |
ELL_3V_COPY(pos + 3*posIdx, wpos);
|
437 : |
glk |
1589 |
posIdx++;
|
438 : |
|
|
break;
|
439 : |
|
|
}
|
440 : |
|
|
break;
|
441 : |
|
|
}
|
442 : |
glk |
1591 |
ELL_3V_SCALE_INCR(wpos, del, dir);
|
443 : |
glk |
1589 |
travel += del;
|
444 : |
|
|
}
|
445 : |
|
|
}
|
446 : |
|
|
}
|
447 : |
|
|
}
|
448 : |
|
|
/* update number of actual output points */
|
449 : |
|
|
npos->axis[1].size = posIdx;
|
450 : |
|
|
|
451 : |
glk |
1601 |
double totalTime = airTime() - t0; // report timing
|
452 : |
jhr |
1584 |
printf("usr=%f\n", totalTime);
|
453 : |
|
|
|
454 : |
glk |
1589 |
if (nrrdSave(outS, npos, NULL)) {
|
455 : |
|
|
airMopAdd(mop, err = biffGetDone(NRRD), airFree, airMopAlways);
|
456 : |
|
|
fprintf(stderr, "%s: Trouble saving output:\n%s", me, err);
|
457 : |
|
|
airMopError(mop);
|
458 : |
|
|
return 1;
|
459 : |
|
|
}
|
460 : |
|
|
|
461 : |
glk |
1582 |
airMopOkay(mop);
|
462 : |
|
|
return 0;
|
463 : |
|
|
}
|