SCM Repository
[diderot] / branches / vis12 / src / compiler / typechecker / typechecker.sml |
View of /branches/vis12/src/compiler/typechecker/typechecker.sml
Parent Directory
|
Revision Log
Revision 2151 -
(download)
(annotate)
Sun Feb 17 19:07:20 2013 UTC (9 years, 3 months ago) by jhr
File size: 34076 byte(s)
Sun Feb 17 19:07:20 2013 UTC (9 years, 3 months ago) by jhr
File size: 34076 byte(s)
Add check that strands have at least one output variable.
(* typechecker.sml * * COPYRIGHT (c) 2013 The Diderot Project (http://diderot-language.cs.uchicago.edu) * All rights reserved. * * TODO: * check for unreachable code and prune it (see simplify/simplify.sml) * error recovery so that we can detect multiple errors in a single compile * check that functions have a return on all paths * check that the args of strand creation have the same type and number as the params *) structure Typechecker : sig val check : Error.err_stream -> ParseTree.program -> AST.program end = struct structure BV = BasisVars structure PT = ParseTree structure Ty = Types structure TU = TypeUtil structure U = Util (* exception to abort typechecking when we hit an error. Eventually, we should continue * checking for more errors and not use this. *) exception TypeError datatype scope = GlobalScope | FunctionScope of Ty.ty | StrandScope | MethodScope | InitScope type env = { scope : scope, bindings : Error.location AtomMap.map, env : Env.env } type context = Error.err_stream * Error.span (* start a new scope *) (* QUESTION: do we want to restrict access to globals from a function? *) fun functionScope ({scope, bindings, env}, ty) = {scope=FunctionScope ty, bindings=AtomMap.empty, env=env} fun strandScope {scope, bindings, env} = {scope=StrandScope, bindings=AtomMap.empty, env=env} fun methodScope {scope, bindings, env} = {scope=MethodScope, bindings=AtomMap.empty, env=env} fun initScope {scope, bindings, env} = {scope=InitScope, bindings=AtomMap.empty, env=env} fun blockScope {scope, bindings, env} = {scope=scope, bindings=AtomMap.empty, env=env} fun inStrand {scope=StrandScope, bindings, env} = true | inStrand {scope=MethodScope, ...} = true | inStrand _ = false fun insertFunc ({scope, bindings, env}, cxt, f, f') = { scope=scope, bindings = AtomMap.insert(bindings, f, Error.location cxt), env=Env.insertFunc(env, f, Env.UserFun f') } fun insertLocal ({scope, bindings, env}, cxt, x, x') = { scope=scope, bindings = AtomMap.insert(bindings, x, Error.location cxt), env=Env.insertLocal(env, x, x') } fun insertGlobal ({scope, bindings, env}, cxt, x, x') = { scope=scope, bindings = AtomMap.insert(bindings, x, Error.location cxt), env=Env.insertGlobal(env, x, x') } fun withContext ((errStrm, _), {span, tree}) = ((errStrm, span), tree) fun withEnvAndContext (env, (errStrm, _), {span, tree}) = (env, (errStrm, span), tree) fun error ((errStrm, span), msg) = ( Error.errorAt(errStrm, span, msg); raise TypeError) datatype token = S of string | A of Atom.atom | V of AST.var | TY of Types.ty | TYS of Types.ty list fun tysToString tys = String.concat[ "(", String.concatWith " * " (List.map TU.toString tys), ")" ] fun err (cxt, toks) = let fun tok2str (S s) = s | tok2str (A a) = concat["'", Atom.toString a, "'"] | tok2str (V x) = concat["'", Var.nameOf x, "'"] | tok2str (TY ty) = TU.toString ty | tok2str (TYS []) = "()" | tok2str (TYS[ty]) = TU.toString ty | tok2str (TYS tys) = tysToString tys in error(cxt, List.map tok2str toks) end fun checkForRedef (env : env, cxt : context, x) = (case AtomMap.find(#bindings env,x) of SOME loc => err (cxt, [ S "redefinition of ", A x, S ", previous definition at ", S(Error.locToString loc) ]) | NONE => () (* end case *)) val realZero = AST.E_Lit(Literal.Float(FloatLit.zero true)) (* check a differentiation level, which must be >= 0 *) fun checkDiff (cxt, k) = if (k < 0) then err (cxt, [S "differentiation must be >= 0"]) else Ty.DiffConst(IntInf.toInt k) (* check a sequence dimension, which must be > 0 *) fun checkSeqDim (cxt, d) = if (d < 0) then err (cxt, [S "invalid dimension; must be positive"]) else Ty.DimConst(IntInf.toInt d) (* check a dimension, which must be 1, 2 or 3 *) fun checkDim (cxt, d) = if (d < 1) orelse (3 < d) then err (cxt, [S "invalid dimension; must be 1, 2, or 3"]) else Ty.DimConst(IntInf.toInt d) (* check a shape *) fun checkShape (cxt, shape) = let fun checkDim d = if (d <= 1) then err (cxt, [S "invalid tensor-shape dimension; must be > 1"]) else Ty.DimConst(IntInf.toInt d) in Ty.Shape(List.map checkDim shape) end (* check the well-formedness of a type and translate it to an AST type *) fun checkTy (cxt, ty) = (case ty of PT.T_Mark m => checkTy(withContext(cxt, m)) | PT.T_Bool => Ty.T_Bool | PT.T_Int => Ty.T_Int | PT.T_Real => Ty.realTy | PT.T_String => Ty.T_String | PT.T_Vec n => (* NOTE: the parser guarantees that 2 <= n <= 4 *) Ty.vecTy(IntInf.toInt n) | PT.T_Kernel k => Ty.T_Kernel(checkDiff(cxt, k)) | PT.T_Field{diff, dim, shape} => Ty.T_Field{ diff = checkDiff (cxt, diff), dim = checkDim (cxt, dim), shape = checkShape (cxt, shape) } | PT.T_Tensor shape => Ty.T_Tensor(checkShape(cxt, shape)) | PT.T_Image{dim, shape} => Ty.T_Image{ dim = checkDim (cxt, dim), shape = checkShape (cxt, shape) } | PT.T_Seq(ty, dim) => let val ty = checkTy(cxt, ty) in if TU.isFixedSizeType ty then Ty.T_Sequence(ty, checkSeqDim (cxt, dim)) else err(cxt, [S "elements of sequence types must be fixed-size types"]) end | PT.T_DynSeq ty => let val ty = checkTy(cxt, ty) in if TU.isFixedSizeType ty then Ty.T_DynSequence(ty) else err(cxt, [S "elements of sequence types must be fixed-size types"]) end (* end case *)) fun checkLit lit = (case lit of (Literal.Int _) => (AST.E_Lit lit, Ty.T_Int) | (Literal.Float _) => (AST.E_Lit lit, Ty.realTy) | (Literal.String s) => (AST.E_Lit lit, Ty.T_String) | (Literal.Bool _) => (AST.E_Lit lit, Ty.T_Bool) (* end case *)) fun coerceExp (Ty.T_Tensor(Ty.Shape[]), Ty.T_Int, AST.E_Lit(Literal.Int n)) = AST.E_Lit(Literal.Float(FloatLit.fromInt n)) | coerceExp (ty1, ty2, e) = AST.E_Coerce{srcTy=ty2, dstTy=ty1, e=e} fun coerceType (dstTy, srcTy, e) = (case U.matchType(dstTy, srcTy) of U.EQ => SOME e | U.COERCE => SOME(coerceExp (dstTy, srcTy, e)) | U.FAIL => NONE (* end case *)) fun realType (ty as Ty.T_Tensor(Ty.Shape[])) = ty | realType (ty as Ty.T_Int) = Ty.realTy | realType ty = ty (* resolve overloading: we use a simple scheme that selects the first operator in the * list that matches the argument types. *) fun resolveOverload (_, rator, _, _, []) = raise Fail(concat[ "resolveOverload: \"", Atom.toString rator, "\" has no candidates" ]) | resolveOverload (cxt, rator, argTys, args, candidates) = let (* FIXME: we could be more efficient by just checking for coercion matchs the first pass * and remembering those that are not pure EQ matches. *) (* try to match candidates while allowing type coercions *) fun tryMatchCandidates [] = err(cxt, [ S "unable to resolve overloaded operator \"", A rator, S "\"\n", S " argument type is: ", TYS argTys, S "\n" ]) | tryMatchCandidates (x::xs) = let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf x) in case U.tryMatchArgs (domTy, args, argTys) of SOME args' => (AST.E_Apply(x, tyArgs, args', rngTy), rngTy) | NONE => tryMatchCandidates xs (* end case *) end fun tryCandidates [] = tryMatchCandidates candidates | tryCandidates (x::xs) = let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf x) in if U.tryEqualTypes(domTy, argTys) then (AST.E_Apply(x, tyArgs, args, rngTy), rngTy) else tryCandidates xs end in tryCandidates candidates end (* typecheck an expression and translate it to AST *) fun checkExpr (env : env, cxt, e) = (case e of PT.E_Mark m => checkExpr (withEnvAndContext (env, cxt, m)) | PT.E_Var x => (case Env.findVar (#env env, x) of SOME x' => (AST.E_Var x', Var.monoTypeOf x') | NONE => err(cxt, [S "undeclared variable ", A x]) (* end case *)) | PT.E_Lit lit => checkLit lit | PT.E_OrElse(e1, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in case (ty1, ty2) of (Ty.T_Bool, Ty.T_Bool) => (AST.E_Cond(e1', AST.E_Lit(Literal.Bool true), e2', Ty.T_Bool), Ty.T_Bool) | _ => err (cxt, [S "arguments to \"||\" must have bool type"]) (* end case *) end | PT.E_AndAlso(e1, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in case (ty1, ty2) of (Ty.T_Bool, Ty.T_Bool) => (AST.E_Cond(e1', e2', AST.E_Lit(Literal.Bool false), Ty.T_Bool), Ty.T_Bool) | _ => err (cxt, [S "arguments to \"&&\" must have bool type"]) (* end case *) end | PT.E_Cond(e1, cond, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in case checkExpr(env, cxt, cond) of (cond', Ty.T_Bool) => if U.equalType(ty1, ty2) then (AST.E_Cond(cond', e1', e2', ty1), ty1) else err (cxt, [ S "types do not match in conditional expression\n", S " true branch: ", TY ty1, S "\n", S " false branch: ", TY ty2 ]) | (_, ty') => err (cxt, [S "expected bool type, but found ", TY ty']) (* end case *) end | PT.E_BinOp(e1, rator, e2) => let val (e1', ty1) = checkExpr(env, cxt, e1) val (e2', ty2) = checkExpr(env, cxt, e2) in if Atom.same(rator, BasisNames.op_dot) (* we have to handle inner product as a special case, because out type * system cannot express the constraint that the type is * ALL[sigma1, d1, sigma2] . tensor[sigma1, d1] * tensor[d1, sigma2] -> tensor[sigma1, sigma2] *) then (case (TU.prune ty1, TU.prune ty2) of (Ty.T_Tensor(s1 as Ty.Shape(dd1 as _::_)), Ty.T_Tensor(s2 as Ty.Shape(d2::dd2))) => let val (dd1, d1) = let fun splitLast (prefix, [d]) = (List.rev prefix, d) | splitLast (prefix, d::dd) = splitLast (d::prefix, dd) | splitLast (_, []) = raise Fail "impossible" in splitLast ([], dd1) end val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf BV.op_inner) val resTy = Ty.T_Tensor(Ty.Shape(dd1@dd2)) in if U.equalDim(d1, d2) andalso U.equalTypes(domTy, [ty1, ty2]) andalso U.equalType(rngTy, resTy) then (AST.E_Apply(BV.op_inner, tyArgs, [e1', e2'], rngTy), rngTy) else err (cxt, [ S "type error for arguments of binary operator \"•\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) end | (ty1, ty2) => err (cxt, [ S "type error for arguments of binary operator \"•\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) (* end case *)) else if Atom.same(rator, BasisNames.op_colon) then (case (TU.prune ty1, TU.prune ty2) of (Ty.T_Tensor(s1 as Ty.Shape(dd1 as _::_::_)), Ty.T_Tensor(s2 as Ty.Shape(d21::d22::dd2))) => let val (dd1, d11, d12) = let fun splitLast (prefix, [d1, d2]) = (List.rev prefix, d1, d2) | splitLast (prefix, d::dd) = splitLast (d::prefix, dd) | splitLast (_, []) = raise Fail "impossible" in splitLast ([], dd1) end val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf BV.op_colon) val resTy = Ty.T_Tensor(Ty.Shape(dd1@dd2)) in if U.equalDim(d11, d21) andalso U.equalDim(d12, d22) andalso U.equalTypes(domTy, [ty1, ty2]) andalso U.equalType(rngTy, resTy) then (AST.E_Apply(BV.op_colon, tyArgs, [e1', e2'], rngTy), rngTy) else err (cxt, [ S "type error for arguments of binary operator \":\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) end | (ty1, ty2) => err (cxt, [ S "type error for arguments of binary operator \":\"\n", S " found: ", TYS[ty1, ty2], S "\n" ]) (* end case *)) else (case Env.findFunc (#env env, rator) of Env.PrimFun[rator] => let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = Util.instantiate(Var.typeOf rator) in case U.matchArgs(domTy, [e1', e2'], [ty1, ty2]) of SOME args => (AST.E_Apply(rator, tyArgs, args, rngTy), rngTy) | NONE => err (cxt, [ S "type error for binary operator \"", V rator, S "\"\n", S " expected: ", TYS domTy, S "\n", S " but found: ", TYS[ty1, ty2] ]) (* end case *) end | Env.PrimFun ovldList => resolveOverload (cxt, rator, [ty1, ty2], [e1', e2'], ovldList) | _ => raise Fail "impossible" (* end case *)) end | PT.E_UnaryOp(rator, e) => let val (e', ty) = checkExpr(env, cxt, e) in case Env.findFunc (#env env, rator) of Env.PrimFun[rator] => let val (tyArgs, Ty.T_Fun([domTy], rngTy)) = U.instantiate(Var.typeOf rator) in case coerceType (domTy, ty, e') of SOME e' => (AST.E_Apply(rator, tyArgs, [e'], rngTy), rngTy) | NONE => err (cxt, [ S "type error for unary operator \"", V rator, S "\"\n", S " expected: ", TY domTy, S "\n", S " but found: ", TY ty ]) (* end case *) end | Env.PrimFun ovldList => resolveOverload (cxt, rator, [ty], [e'], ovldList) | _ => raise Fail "impossible" (* end case *) end | PT.E_Slice(e, indices) => let val (e', ty) = checkExpr (env, cxt, e) fun checkIndex NONE = NONE | checkIndex (SOME e) = let val (e', ty) = checkExpr (env, cxt, e) in if U.equalType(ty, Ty.T_Int) then (SOME e') else err (cxt, [ S "type error in index expression\n", S " expected int, but found: ", TY ty ]) end val indices' = List.map checkIndex indices val order = List.length indices' val expectedTy = TU.mkTensorTy order val resultTy = TU.slice(expectedTy, List.map Option.isSome indices') in if U.equalType(ty, expectedTy) then () else err (cxt, [ S "type error in slice operation\n", S " expected: ", S(Int.toString order), S "-order tensor\n", S " but found: ", TY ty ]); (AST.E_Slice(e', indices', resultTy), resultTy) end | PT.E_Subscript(e1, e2) => let val (e1', ty1) = checkExpr (env, cxt, e1) val (e2', ty2) = checkExpr (env, cxt, e2) fun chkIndex () = if U.equalType(ty2, Ty.T_Int) then () else err (cxt, [ S "expected int type for subscript index\n", S " but found: ", TY ty2 ]) fun finish rator = let val (tyArgs, Ty.T_Fun(domTy, rngTy)) = U.instantiate(Var.typeOf rator) in if U.equalTypes(domTy, [ty1, ty2]) then let val exp = AST.E_Apply(rator, tyArgs, [e1', e2'], rngTy) in (exp, rngTy) end else raise Fail "unexpected unification failure" end in case TU.pruneHead ty1 of Ty.T_DynSequence _ => ( chkIndex (); finish BV.dynSubscript) | Ty.T_Sequence _ => ( chkIndex (); finish BV.subscript) | _ => err (cxt, [ S "expected sequence type for subscript\n", S " but found: ", TY ty1 ]) (* end case *) end | PT.E_Apply(e, args) => let fun stripMark (PT.E_Mark{tree, ...}) = stripMark tree | stripMark e = e val (args, tys) = checkExprList (env, cxt, args) fun checkFunApp f = (case Util.instantiate(Var.typeOf f) of (tyArgs, Ty.T_Fun(domTy, rngTy)) => ( case U.matchArgs (domTy, args, tys) of SOME args => (AST.E_Apply(f, tyArgs, args, rngTy), rngTy) | NONE => err(cxt, [ S "type error in application of ", V f, S "\n", S " expected: ", TYS domTy, S "\n", S " but found: ", TYS tys ]) (* end case *)) | _ => err(cxt, [S "application of non-function ", V f]) (* end case *)) fun checkFieldApp (e1', ty1) = (case (args, tys) of ([e2'], [ty2]) => let val (tyArgs, Ty.T_Fun([fldTy, domTy], rngTy)) = Util.instantiate(Var.typeOf BV.op_probe) fun tyError () = err (cxt, [ S "type error for field application\n", S " expected: ", TYS[fldTy, domTy], S "\n", S " but found: ", TYS[ty1, ty2] ]) in if U.equalType(fldTy, ty1) then (case coerceType(domTy, ty2, e2') of SOME e2' => (AST.E_Apply(BV.op_probe, tyArgs, [e1', e2'], rngTy), rngTy) | NONE => tyError() (* end case *)) else tyError() end | _ => err(cxt, [S "badly formed field application"]) (* end case *)) in case stripMark e of PT.E_Var f => (case Env.findVar (#env env, f) of SOME f' => checkFieldApp (AST.E_Var f', Var.monoTypeOf f') | NONE => (case Env.findFunc (#env env, f) of Env.PrimFun[] => err(cxt, [S "unknown function ", A f]) | Env.PrimFun[f'] => if (inStrand env) andalso (Basis.isRestricted f') then err(cxt, [ S "use of restricted operation ", V f', S " in strand body" ]) else checkFunApp f' | Env.PrimFun ovldList => resolveOverload (cxt, f, tys, args, ovldList) | Env.UserFun f' => checkFunApp f' (* end case *)) (* end case *)) | _ => checkFieldApp (checkExpr (env, cxt, e)) (* end case *) end | PT.E_Tuple args => let val (args, tys) = checkExprList (env, cxt, args) in raise Fail "E_Tuple not yet implemented" (* FIXME *) end | PT.E_Sequence args => let val (args, ty::tys) = checkExprList (env, cxt, args) in if TU.isFixedSizeType(TU.pruneHead ty) then let fun chkTy ty' = U.equalType(ty, ty') val resTy = Ty.T_Sequence(ty, Ty.DimConst(List.length args)) in if List.all chkTy tys then (AST.E_Seq args, resTy) else err(cxt, [S "arguments of sequence expression must have same type"]) end else err(cxt, [S "sequence expression of non-value argument type"]) end | PT.E_Cons args => let val (args, tys as ty::_) = checkExprList (env, cxt, args) in case realType(TU.pruneHead ty) of ty as Ty.T_Tensor shape => let val Ty.Shape dd = TU.pruneShape shape (* NOTE: this may fail if we allow user polymorphism *) val resTy = Ty.T_Tensor(Ty.Shape(Ty.DimConst(List.length args) :: dd)) fun chkArgs (arg::args, argTy::tys, args') = (case coerceType(ty, argTy, arg) of SOME arg' => chkArgs (args, tys, arg'::args') | NONE => err(cxt, [S "arguments of tensor construction must have same type"]) (* end case *)) | chkArgs ([], [], args') = (AST.E_Cons(List.rev args'), resTy) in chkArgs (args, tys, []) end | _ => err(cxt, [S "Invalid argument type for tensor construction"]) (* end case *) end | PT.E_Real e => (case checkExpr (env, cxt, e) of (e', Ty.T_Int) => (AST.E_Apply(BV.i2r, [], [e'], Ty.realTy), Ty.realTy) | _ => err(cxt, [S "argument of real conversion must be int"]) (* end case *)) | PT.E_Id d => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.identity)) in if U.equalType(Ty.T_Tensor(checkShape(cxt, [d,d])), rngTy) then (AST.E_Apply(BV.identity, tyArgs, [], rngTy), rngTy) else raise Fail "impossible" end | PT.E_Zero dd => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.zero)) in if U.equalType(Ty.T_Tensor(checkShape(cxt, dd)), rngTy) then (AST.E_Apply(BV.zero, tyArgs, [], rngTy), rngTy) else raise Fail "impossible" end | PT.E_Image nrrd => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.fn_image)) in (AST.E_LoadNrrd(tyArgs, nrrd, rngTy), rngTy) end | PT.E_Load nrrd => let val (tyArgs, Ty.T_Fun(_, rngTy)) = Util.instantiate(Var.typeOf(BV.fn_load)) in (AST.E_LoadNrrd(tyArgs, nrrd, rngTy), rngTy) end (* end case *)) (* typecheck a list of expressions returning a list of AST expressions and a list * of types of the expressions. *) and checkExprList (env, cxt, exprs) = let fun chk (e, (es, tys)) = let val (e, ty) = checkExpr (env, cxt, e) in (e::es, ty::tys) end in List.foldr chk ([], []) exprs end fun checkVarDecl (env, cxt, kind, d) = (case d of PT.VD_Mark m => checkVarDecl (env, (#1 cxt, #span m), kind, #tree m) | PT.VD_Decl(ty, x, e) => let val ty = checkTy (cxt, ty) val x' = Var.new (x, kind, ty) val (e', ty') = checkExpr (env, cxt, e) in case coerceType (ty, ty', e') of SOME e' => (x, x', e') | NONE => err(cxt, [ S "type of variable ", A x, S " does not match type of initializer\n", S " expected: ", TY ty, S "\n", S " but found: ", TY ty' ]) (* end case *) end (* end case *)) (* typecheck a statement and translate it to AST *) fun checkStmt (env, cxt, s) = (case s of PT.S_Mark m => checkStmt (withEnvAndContext (env, cxt, m)) | PT.S_Block stms => let fun chk (_, [], stms) = AST.S_Block(List.rev stms) | chk (env, s::ss, stms) = let val (s', env') = checkStmt (env, cxt, s) in chk (env', ss, s'::stms) end in (chk (blockScope env, stms, []), env) end | PT.S_Decl vd => let val (x, x', e) = checkVarDecl (env, cxt, Var.LocalVar, vd) in checkForRedef (env, cxt, x); (AST.S_Decl(AST.VD_Decl(x', e)), insertLocal(env, cxt, x, x')) end | PT.S_IfThen(e, s) => let val (e', ty) = checkExpr (env, cxt, e) val (s', _) = checkStmt (env, cxt, s) in (* check that condition has bool type *) case ty of Ty.T_Bool => () | _ => err(cxt, [S "condition not boolean type"]) (* end case *); (AST.S_IfThenElse(e', s', AST.S_Block[]), env) end | PT.S_IfThenElse(e, s1, s2) => let val (e', ty) = checkExpr (env, cxt, e) val (s1', _) = checkStmt (env, cxt, s1) val (s2', _) = checkStmt (env, cxt, s2) in (* check that condition has bool type *) case ty of Ty.T_Bool => () | _ => err(cxt, [S "condition not boolean type"]) (* end case *); (AST.S_IfThenElse(e', s1', s2'), env) end | PT.S_Assign(x, e) => (case Env.findVar (#env env, x) of NONE => err(cxt, [ S "undefined variable ", A x ]) | SOME x' => let (* FIXME: check for polymorphic variables *) val ([], ty) = Var.typeOf x' val (e', ty') = checkExpr (env, cxt, e) (* check for promotion *) val e' = (case coerceType(ty, ty', e') of SOME e' => e' | NONE => err(cxt, [ S "type of assigned variable ", A x, S " does not match type of rhs\n", S " expected: ", TY ty, S "\n", S " but found: ", TY ty' ]) (* end case *)) in (* check that x' is mutable *) case Var.kindOf x' of Var.StrandStateVar => () | Var.StrandOutputVar => () | Var.LocalVar => () | _ => err(cxt, [ S "assignment to immutable variable ", A x ]) (* end case *); (AST.S_Assign(x', e'), env) end (* end case *)) | PT.S_OpAssign(x, rator, e) => (case Env.findVar (#env env, x) of SOME x' => let val e1' = AST.E_Var x' val ty1 = Var.monoTypeOf x' val (e2', ty2) = checkExpr(env, cxt, e) val Env.PrimFun ovldList = Env.findFunc (#env env, rator) val (rhs, _) = resolveOverload (cxt, rator, [ty1, ty2], [e1', e2'], ovldList) in (AST.S_Assign(x', rhs), env) end | NONE => err(cxt, [S "undeclared variable ", A x, S " on lhs of ", A rator]) (* end case *)) | PT.S_New(strand, args) => let val argsAndTys' = List.map (fn e => checkExpr(env, cxt, e)) args val (args', tys') = ListPair.unzip argsAndTys' in case #scope env of MethodScope => () | InitScope => () | _ => err(cxt, [S "invalid scope for new strand"]) (* end case *); (* FIXME: check that strand is defined and has the argument types match *) (AST.S_New(strand, args'), env) end | PT.S_Die => ( case #scope env of MethodScope => () | _ => err(cxt, [S "\"die\" statment outside of method"]) (* end case *); (AST.S_Die, env)) | PT.S_Stabilize => ( case #scope env of MethodScope => () | _ => err(cxt, [S "\"stabilize\" statment outside of method"]) (* end case *); (AST.S_Stabilize, env)) | PT.S_Return e => let val (e', ty) = checkExpr (env, cxt, e) in case #scope env of FunctionScope ty' => (case coerceType(ty', ty, e') of SOME e' => (AST.S_Return e', env) | NONE => err(cxt, [ S "type of return expression does not match function's return type\n", S " expected: ", TY ty', S "\n", S " but found: ", TY ty ]) (* end case *)) | _ => err(cxt, [S "\"return\" statment outside of function"]) (* end case *) end | PT.S_Print args => let fun chkArg e = let val (e', ty) = checkExpr (env, cxt, e) in if TU.isValueType ty then () else err(cxt, [ S "expected value type in print, but found ", TY ty ]); e' end val args' = List.map chkArg args in (AST.S_Print args', env) end (* end case *)) fun checkParams (env, cxt, params) = let fun chkParam (env, cxt, param) = (case param of PT.P_Mark m => chkParam (withEnvAndContext (env, cxt, m)) | PT.P_Param(ty, x) => let val x' = Var.new(x, AST.StrandParam, checkTy (cxt, ty)) in (* FIXME: should use an empty bindings list for the parameters *) checkForRedef (env, cxt, x); (x', insertLocal(env, cxt, x, x')) end (* end case *)) fun chk (param, (xs, env)) = let val (x, env) = chkParam (env, cxt, param) in (x::xs, env) end in List.foldr chk ([], env) params end fun checkMethod (env, cxt, meth) = (case meth of PT.M_Mark m => checkMethod (withEnvAndContext (env, cxt, m)) | PT.M_Method(name, body) => let val (body, _) = checkStmt(methodScope env, cxt, body) in AST.M_Method(name, body) end (* end case *)) fun checkStrand (env, cxt, {name, params, state, methods}) = let (* check the strand parameters *) val (params, env) = checkParams (env, cxt, params) (* check the strand state variable definitions *) val (vds, hasOutput, env) = let fun checkStateVar ((isOut, vd), (vds, hasOut, env)) = let val kind = if isOut then AST.StrandOutputVar else AST.StrandStateVar val (x, x', e') = checkVarDecl (env, cxt, kind, vd) in (* check that output variables have value types *) if isOut andalso not(TU.isValueType(Var.monoTypeOf x')) then err(cxt, [ S "output variable ", V x', S " has non-value type ", TY(Var.monoTypeOf x') ]) else (); checkForRedef (env, cxt, x); (AST.VD_Decl(x', e')::vds, hasOut orelse isOut, insertLocal(env, cxt, x, x')) end val (vds, hasOutput, env) = List.foldl checkStateVar ([], false, env) state in (List.rev vds, hasOutput, env) end (* check the strand methods *) val methods = List.map (fn m => checkMethod (env, cxt, m)) methods (* get the list of methods defined by the user *) val methodNames = List.map (fn (AST.M_Method(name, _)) => name) methods (* if the stabilize method is not provided, add one *) val methods = if List.exists (fn StrandUtil.Stabilize => true | _ => false) methodNames then methods else methods @ [AST.M_Method(StrandUtil.Stabilize, AST.S_Block[])] in (* FIXME: once there are global outputs, then it should be okay to have not strand outputs! *) (* check that there is at least one output variable *) if not hasOutput then err(cxt, [S "strand ", A name, S " does not have any outputs"]) else (); (* FIXME: should check for duplicate method definitions *) if not(List.exists (fn StrandUtil.Update => true | _ => false) methodNames) then err(cxt, [S "strand ", A name, S " is missing an update method"]) else (); AST.D_Strand{name = name, params = params, state = vds, methods = methods} end fun checkCreate (env, cxt, PT.C_Mark m) = checkCreate (withEnvAndContext (env, cxt, m)) | checkCreate (env, cxt, PT.C_Create(strand, args)) = let val (args, tys) = checkExprList (env, cxt, args) in (* FIXME: check args against strand definition *) AST.C_Create(strand, args) end fun checkIters (env0, cxt, iters) = let (* check an iteration range specification from the initially clause. We do the checking * of the expressions using env0, which does not have any of the iteration variables in * it (the iteration is rectangular), but we also accumulate the iteration bindings, * which are used to create the final environment for checking the create call. *) fun checkIter (env, cxt, PT.I_Mark m) = checkIter (withEnvAndContext (env, cxt, m)) | checkIter (env, cxt, PT.I_Range(x, e1, e2)) = let val (e1', ty1) = checkExpr (env, cxt, e1) val (e2', ty2) = checkExpr (env, cxt, e2) val x' = Var.new(x, Var.LocalVar, Ty.T_Int) in case (ty1, ty2) of (Ty.T_Int, Ty.T_Int) => (AST.I_Range(x', e1', e2'), (x, x')) | _ => err(cxt, [ S "range expressions must have integer type\n", S " but found: ", TY ty1, S " .. ", TY ty2 ]) (* end case *) end fun chk ([], iters, bindings) = (List.rev iters, List.foldl (fn ((x, x'), env) => insertLocal(env, cxt, x, x')) env0 bindings) | chk (iter::rest, iters, bindings) = let val (iter, binding) = checkIter (env0, cxt, iter) in chk (rest, iter::iters, binding::bindings) end in chk (iters, [], []) end fun checkDecl (env, cxt, d) = (case d of PT.D_Mark m => checkDecl (withEnvAndContext (env, cxt, m)) | PT.D_Input(ty, x, desc, optExp) => let (* FIXME: need to do something with the description *) val ty = checkTy(cxt, ty) val x' = Var.new(x, Var.InputVar, ty) val dcl = (case optExp of NONE => AST.D_Input(x', desc, NONE) | SOME e => let val (e', ty') = checkExpr (env, cxt, e) in case coerceType (ty, ty', e') of SOME e' => AST.D_Input(x', desc, SOME e') | NONE => err(cxt, [ S "definition of ", V x', S " has wrong type\n", S " expected: ", TY ty, S "\n", S " but found: ", TY ty' ]) (* end case *) end (* end case *)) in (* check that input variables have valid types *) if not(TU.isValueType ty orelse TU.isImageType ty) then err(cxt, [S "input variable ", V x', S " has invalid type ", TY ty]) else (); checkForRedef (env, cxt, x); (dcl, insertGlobal(env, cxt, x, x')) end | PT.D_Var vd => let val (x, x', e') = checkVarDecl (env, cxt, Var.GlobalVar, vd) in checkForRedef (env, cxt, x); (AST.D_Var(AST.VD_Decl(x', e')), insertGlobal(env, cxt, x, x')) end | PT.D_Func(ty, f, params, body) => let val ty' = checkTy(cxt, ty) val (params', env') = checkParams (env, cxt, params) val body' = (case body of PT.FB_Expr e => let val (e', ty) = checkExpr (env', cxt, e) in case coerceType(ty', ty, e') of SOME e' => AST.S_Return e' | NONE => err(cxt, [ S "type of function body does not match return type\n", S " expected: ", TY ty', S "\n", S " but found: ", TY ty ]) (* end case *) end (* FIXME: we need to check that there is a return on all control-flow paths *) | PT.FB_Stmt s => #1(checkStmt(functionScope (env', ty'), cxt, s)) (* end case *)) val fnTy = Ty.T_Fun(List.map Var.monoTypeOf params', ty') val f' = Var.new (f, AST.FunVar, fnTy) in (* QUESTION: should we check for redefinition of the f? *) (AST.D_Func(f', params', body'), insertFunc(env, cxt, f, f')) end | PT.D_Strand arg => (checkStrand(strandScope env, cxt, arg), env) | PT.D_InitialArray(create, iterators) => let val env = initScope env val (iterators, env') = checkIters (env, cxt, iterators) val create = checkCreate (env', cxt, create) in (AST.D_InitialArray(create, iterators), env) end | PT.D_InitialCollection(create, iterators) => let val env = initScope env val (iterators, env') = checkIters (env, cxt, iterators) val create = checkCreate (env', cxt, create) in (AST.D_InitialCollection(create, iterators), env) end (* end case *)) (* reorder the declarations so that the input variables come first *) fun reorderDecls dcls = let fun isInput (AST.D_Input _) = true | isInput _ = false val (inputs, others) = List.partition isInput dcls in inputs @ others end fun check errStrm (PT.Program{span, tree}) = let val cxt = (errStrm, span) fun chk (env, [], dcls') = AST.Program(reorderDecls(List.rev dcls')) | chk (env, dcl::dcls, dcls') = let val (dcl', env) = checkDecl (env, cxt, dcl) in chk (env, dcls, dcl'::dcls') end in chk ({scope=GlobalScope, bindings=AtomMap.empty, env=Basis.env}, tree, []) end handle TypeError => AST.Program[] end
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |