SCM Repository
Annotation of /sml/trunk/src/MLRISC/x86/mltree/x86-fp.sml
Parent Directory
|
Revision Log
Revision 1052 - (view) (download)
1 : | jhr | 925 | (* x86-fp.sml |
2 : | * | ||
3 : | * COPYRIGHT (c) 2001 Bell Labs, Lucent Technologies | ||
4 : | * | ||
5 : | leunga | 731 | * This phase takes a cluster with pseudo x86 fp instructions, performs |
6 : | * liveness analysis to determine their live ranges, and rewrite the | ||
7 : | * program into the correct stack based code. | ||
8 : | * | ||
9 : | * The Basics | ||
10 : | * ---------- | ||
11 : | * o We assume there are 7 pseudo fp registers, %fp(0), ..., %fp(6), | ||
12 : | * which are mapped onto the %st stack. One stack location is reserved | ||
13 : | * for holding temporaries. | ||
14 : | * o Important: for floating point comparisons, we actually need | ||
15 : | * two extra stack locations in the worst case. We handle this by | ||
16 : | * specifying that the instruction define an extra temporary fp register | ||
17 : | * when necessary. | ||
18 : | * o The mapping between %fp <-> %st may change from program point to | ||
19 : | * program point. We keep track of this lazy renaming and try to minimize | ||
20 : | * the number of FXCH that we insert. | ||
21 : | * o At split and merge points, we may get inconsistent %fp <-> %st mappings. | ||
22 : | * We handle this by inserting the appropriate renaming code. | ||
23 : | * o Parallel copies (renaming) are rewritten into a sequence of FXCHs! | ||
24 : | * | ||
25 : | * Pseudo fp instructions Semantics | ||
26 : | * -------------------------------------- | ||
27 : | * FMOVE src, dst dst := src | ||
28 : | * FILOAD ea, dst dst := cvti2f(mem[ea]) | ||
29 : | * FBINOP lsrc, rsrc, dst dst := lsrc * rsrc | ||
30 : | * FIBINOP lsrc, rsrc, dst dst := lsrc * cvti2f(rsrc) | ||
31 : | * FUNOP src, dst dst := unaryOp src | ||
32 : | * FCMP lsrc, rsrc fp condition code := fcmp(lsrc, rsrc) | ||
33 : | * | ||
34 : | * An instruction may use its source operand(s) destructively. | ||
35 : | * We find this info using a global liveness analysis. | ||
36 : | * | ||
37 : | * The Translation | ||
38 : | * --------------- | ||
39 : | * o We keep track of the bindings between %fp registers and the | ||
40 : | * %st(..) staack locations. | ||
41 : | * o FXCH and FLDL are inserted at the appropriate places to move operands | ||
42 : | * to %st(0). FLDL is used if the operand is not dead. FXCH is used | ||
43 : | * if the operand is the last use. | ||
44 : | * o FCOPY's between pseudo %fp registers are done by software renaming | ||
45 : | * and generate no code by itself! | ||
46 : | * o FSTL %st(1) are also generated to pop the stack after the last use | ||
47 : | * of an operand. | ||
48 : | * | ||
49 : | * Note | ||
50 : | * ---- | ||
51 : | * 1. This module should be run after floating point register allocation. | ||
52 : | * 2. Due to the extra complication of critical edge splitting, the cellset | ||
53 : | * and frequency info are not preserved. | ||
54 : | * | ||
55 : | * -- Allen Leung (leunga@cs.nyu.edu) | ||
56 : | *) | ||
57 : | |||
58 : | local | ||
59 : | leunga | 1025 | val debug = false (* set this to true to debug this module |
60 : | leunga | 731 | * set this to false for production use. |
61 : | *) | ||
62 : | jhr | 925 | val debugLiveness = true (* debug liveness analysis *) |
63 : | leunga | 731 | val debugDead = false (* debug dead code removal *) |
64 : | jhr | 925 | val sanityCheck = true |
65 : | leunga | 731 | in |
66 : | functor X86FP | ||
67 : | (structure X86Instr : X86INSTR | ||
68 : | george | 984 | structure X86Props : INSN_PROPERTIES |
69 : | where I = X86Instr | ||
70 : | structure Flowgraph : CONTROL_FLOW_GRAPH | ||
71 : | where I = X86Instr | ||
72 : | structure Liveness : LIVENESS | ||
73 : | where CFG = Flowgraph | ||
74 : | structure Asm : INSTRUCTION_EMITTER | ||
75 : | where I = X86Instr | ||
76 : | and S.P = Flowgraph.P | ||
77 : | george | 909 | ) : CFG_OPTIMIZATION = |
78 : | leunga | 731 | struct |
79 : | george | 909 | structure CFG = Flowgraph |
80 : | jhr | 925 | structure G = Graph |
81 : | leunga | 731 | structure I = X86Instr |
82 : | leunga | 775 | structure T = I.T |
83 : | leunga | 731 | structure P = X86Props |
84 : | structure C = I.C | ||
85 : | structure A = Array | ||
86 : | structure L = Label | ||
87 : | structure An = Annotations | ||
88 : | george | 889 | structure CB = CellsBasis |
89 : | structure SL = CB.SortedCells | ||
90 : | jhr | 925 | structure HT = IntHashTable |
91 : | leunga | 731 | |
92 : | george | 909 | type flowgraph = CFG.cfg |
93 : | leunga | 731 | type an = An.annotations |
94 : | |||
95 : | val name = "X86 floating point rewrite" | ||
96 : | |||
97 : | val debugOn = MLRiscControl.getFlag "x86-fp-debug" | ||
98 : | val traceOn = MLRiscControl.getFlag "x86-fp-trace" | ||
99 : | |||
100 : | fun error msg = MLRiscErrorMsg.error("X86FP",msg) | ||
101 : | fun pr msg = TextIO.output(!MLRiscControl.debug_stream,msg) | ||
102 : | |||
103 : | val i2s = Int.toString | ||
104 : | |||
105 : | (* | ||
106 : | * No overflow checking is needed for integer arithmetic in this module | ||
107 : | *) | ||
108 : | fun x + y = Word.toIntX(Word.+(Word.fromInt x, Word.fromInt y)) | ||
109 : | fun x - y = Word.toIntX(Word.-(Word.fromInt x, Word.fromInt y)) | ||
110 : | |||
111 : | jhr | 925 | fun celllistToCellset l = List.foldr CB.CellSet.add CB.CellSet.empty l |
112 : | fun celllistToString l = CB.CellSet.toString(celllistToCellset l) | ||
113 : | |||
114 : | (* Annotation to mark split edges *) | ||
115 : | exception TargetMovedTo of G.node_id | ||
116 : | |||
117 : | leunga | 731 | (*----------------------------------------------------------------------- |
118 : | * Primitive instruction handling routines | ||
119 : | *-----------------------------------------------------------------------*) | ||
120 : | |||
121 : | (* Annotation an instruction *) | ||
122 : | fun mark(instr, []) = instr | ||
123 : | | mark(instr, a::an) = mark(I.ANNOTATION{i=instr,a=a}, an) | ||
124 : | |||
125 : | (* Add pop suffix to a binary operator *) | ||
126 : | fun pop I.FADDL = I.FADDP | pop I.FADDS = I.FADDP | ||
127 : | | pop I.FSUBL = I.FSUBP | pop I.FSUBS = I.FSUBP | ||
128 : | | pop I.FSUBRL = I.FSUBRP | pop I.FSUBRS = I.FSUBRP | ||
129 : | | pop I.FMULL = I.FMULP | pop I.FMULS = I.FMULP | ||
130 : | | pop I.FDIVL = I.FDIVP | pop I.FDIVS = I.FDIVP | ||
131 : | | pop I.FDIVRL = I.FDIVRP | pop I.FDIVRS = I.FDIVRP | ||
132 : | | pop _ = error "fbinop.pop" | ||
133 : | |||
134 : | (* Invert the operator *) | ||
135 : | fun invert I.FADDL = I.FADDL | invert I.FADDS = I.FADDS | ||
136 : | | invert I.FSUBL = I.FSUBRL | invert I.FSUBS = I.FSUBRS | ||
137 : | | invert I.FSUBRL = I.FSUBL | invert I.FSUBRS = I.FSUBS | ||
138 : | | invert I.FMULL = I.FMULL | invert I.FMULS = I.FMULS | ||
139 : | | invert I.FDIVL = I.FDIVRL | invert I.FDIVS = I.FDIVRS | ||
140 : | | invert I.FDIVRL = I.FDIVL | invert I.FDIVRS = I.FDIVS | ||
141 : | | invert I.FADDP = I.FADDP | invert I.FMULP = I.FMULP | ||
142 : | | invert I.FSUBP = I.FSUBRP | invert I.FSUBRP = I.FSUBP | ||
143 : | | invert I.FDIVP = I.FDIVRP | invert I.FDIVRP = I.FDIVP | ||
144 : | | invert _ = error "invert" | ||
145 : | |||
146 : | (* Pseudo instructions *) | ||
147 : | george | 1003 | fun FLD(I.FP32, ea) = I.flds ea |
148 : | | FLD(I.FP64, ea) = I.fldl ea | ||
149 : | | FLD(I.FP80, ea) = I.fldt ea | ||
150 : | leunga | 731 | |
151 : | fun FILD(I.I8, ea) = error "FILD" | ||
152 : | george | 1003 | | FILD(I.I16, ea) = I.fild ea |
153 : | | FILD(I.I32, ea) = I.fildl ea | ||
154 : | | FILD(I.I64, ea) = I.fildll ea | ||
155 : | leunga | 731 | |
156 : | george | 1003 | fun FSTP(I.FP32, ea) = I.fstps ea |
157 : | | FSTP(I.FP64, ea) = I.fstpl ea | ||
158 : | | FSTP(I.FP80, ea) = I.fstpt ea | ||
159 : | leunga | 731 | |
160 : | george | 1003 | fun FST(I.FP32, ea) = I.fsts ea |
161 : | | FST(I.FP64, ea) = I.fstl ea | ||
162 : | leunga | 731 | | FST(I.FP80, ea) = error "FSTT" |
163 : | |||
164 : | (*----------------------------------------------------------------------- | ||
165 : | * Pretty print routines | ||
166 : | *-----------------------------------------------------------------------*) | ||
167 : | george | 889 | fun fregToString f = "%f"^i2s(CB.registerNum f) |
168 : | leunga | 731 | fun fregsToString s = |
169 : | List.foldr (fn (r,"") => fregToString r | | ||
170 : | (r,s) => fregToString r^" "^s) "" s | ||
171 : | |||
172 : | jhr | 925 | fun blknumOf(CFG.BLOCK{id, ...}) = id |
173 : | george | 909 | |
174 : | leunga | 731 | (*----------------------------------------------------------------------- |
175 : | * A stack datatype that mimics the x86 floating point stack | ||
176 : | * and keeps track of bindings between %st(n) and %fp(n). | ||
177 : | *-----------------------------------------------------------------------*) | ||
178 : | structure ST :> | ||
179 : | sig | ||
180 : | type stack | ||
181 : | type stnum = int (* 0 -- 7 *) | ||
182 : | val create : unit -> stack | ||
183 : | val stack0 : stack | ||
184 : | val copy : stack -> stack | ||
185 : | val clear : stack -> unit | ||
186 : | george | 889 | val fp : stack * CB.register_id -> stnum |
187 : | val st : stack * stnum -> CB.register_id | ||
188 : | val set : stack * stnum * CB.register_id -> unit | ||
189 : | val push : stack * CB.register_id -> unit | ||
190 : | leunga | 731 | val xch : stack * stnum * stnum -> unit |
191 : | val pop : stack -> unit | ||
192 : | val depth : stack -> int | ||
193 : | val nonFull : stack -> unit | ||
194 : | george | 889 | val kill : stack * CellsBasis.cell -> unit |
195 : | leunga | 731 | val stackToString : stack -> string |
196 : | val equal : stack * stack -> bool | ||
197 : | end = | ||
198 : | struct | ||
199 : | type stnum = int | ||
200 : | datatype stack = | ||
201 : | leunga | 744 | STACK of |
202 : | george | 889 | { st : CB.register_id A.array, (* mapping %st -> %fp registers *) |
203 : | leunga | 744 | fp : stnum A.array, (* mapping %fp -> %st registers *) |
204 : | sp : int ref (* stack pointer *) | ||
205 : | } | ||
206 : | leunga | 731 | |
207 : | (* Create a new stack *) | ||
208 : | fun create() = STACK{st=A.array(8,~1), fp=A.array(7,16), sp=ref ~1} | ||
209 : | |||
210 : | val stack0 = create() | ||
211 : | |||
212 : | (* Copy a stack *) | ||
213 : | fun copy(STACK{st, fp, sp}) = | ||
214 : | let val st' = A.array(8, ~1) | ||
215 : | val fp' = A.array(7, 16) | ||
216 : | in A.copy{src=st,dst=st',si=0,di=0,len=NONE}; | ||
217 : | A.copy{src=fp,dst=fp',si=0,di=0,len=NONE}; | ||
218 : | STACK{st=st', fp=fp', sp=ref(!sp)} | ||
219 : | end | ||
220 : | |||
221 : | (* Depth of stack *) | ||
222 : | fun depth(STACK{sp, ...}) = !sp + 1 | ||
223 : | |||
224 : | fun nonFull(STACK{sp, ...}) = | ||
225 : | if !sp >= 7 then error "stack overflow" else () | ||
226 : | |||
227 : | (* Given %st(n), lookup the corresponding %fp(n) *) | ||
228 : | fun st(STACK{st, sp, ...}, n) = A.sub(st, !sp - n) | ||
229 : | |||
230 : | (* Given %fp(n), lookup the corresponding %st(n) *) | ||
231 : | leunga | 744 | fun fp(STACK{fp, sp, ...}, n) = !sp - A.sub(fp, n) |
232 : | leunga | 731 | |
233 : | fun stackToString stack = | ||
234 : | let val depth = depth stack | ||
235 : | fun f i = if i >= depth then " ]" | ||
236 : | leunga | 744 | else "%st("^i2s i^")=%f"^i2s(st(stack,i))^" "^f(i+1) |
237 : | leunga | 731 | in "[ "^f 0 end |
238 : | |||
239 : | fun clear(STACK{st, fp, sp, ...}) = | ||
240 : | (sp := ~1; A.modify(fn _ => ~1) st; A.modify(fn _ => 16) fp) | ||
241 : | |||
242 : | (* Set %st(n) := %f *) | ||
243 : | fun set(STACK{st, fp, sp, ...}, n, f) = | ||
244 : | (A.update(st, !sp - n, f); | ||
245 : | leunga | 744 | if f >= 0 then A.update(fp, f, !sp - n) else () |
246 : | leunga | 731 | ) |
247 : | |||
248 : | (* Pop one entry *) | ||
249 : | fun pop(STACK{sp, st, fp, ...}) = sp := !sp - 1 | ||
250 : | |||
251 : | (* Push %fp(f) onto %st(0) *) | ||
252 : | fun push(stack as STACK{sp, ...}, f) = (sp := !sp + 1; set(stack, 0, f)) | ||
253 : | |||
254 : | (* Exchange the contents of %st(m) and %st(n) *) | ||
255 : | fun xch(stack, m, n) = | ||
256 : | let val f_m = st(stack, m) | ||
257 : | val f_n = st(stack, n) | ||
258 : | in set(stack, m, f_n); | ||
259 : | set(stack, n, f_m) | ||
260 : | end | ||
261 : | |||
262 : | george | 889 | fun kill(STACK{fp, ...}, f) = A.update(fp, CB.registerNum f, 16) |
263 : | leunga | 731 | |
264 : | fun equal(st1, st2) = | ||
265 : | let val m = depth st1 | ||
266 : | val n = depth st2 | ||
267 : | fun loop i = | ||
268 : | i >= m orelse (st(st1, i) = st(st2, i) andalso loop(i+1)) | ||
269 : | in m = n andalso loop(0) | ||
270 : | end | ||
271 : | |||
272 : | end (* struct *) | ||
273 : | |||
274 : | (*----------------------------------------------------------------------- | ||
275 : | * Module to handle forward propagation. | ||
276 : | * Forward propagation does the following: | ||
277 : | * Given an instruction | ||
278 : | * fmove mem, %fp(n) | ||
279 : | * We delay the generation of the load until the first use of %fp(n), | ||
280 : | * which we can further optimize by folding the load into the operand | ||
281 : | * of the instruction, if it is the last use of this operand. | ||
282 : | * If %fp(n) is dead then no load is necessary. | ||
283 : | * Of course, we have to be careful whenever we encounter other | ||
284 : | * instruction with a write. | ||
285 : | *-----------------------------------------------------------------------*) | ||
286 : | leunga | 744 | (* |
287 : | leunga | 731 | structure ForwardPropagation :> |
288 : | sig | ||
289 : | type readbuffer | ||
290 : | val create : ST.stack -> readbuffer | ||
291 : | val load : readbuffer * C.cell * I.fsize * I.ea -> unit | ||
292 : | val getreg : readbuffer * bool * C.cell * I.instruction list -> | ||
293 : | I.operand * I.instruction list | ||
294 : | val flush : readbuffer * I.instruction list -> I.instruction list | ||
295 : | end = | ||
296 : | struct | ||
297 : | |||
298 : | datatype readbuffer = | ||
299 : | READ of { stack : ST.stack, | ||
300 : | loads : (I.fsize * I.ea) option A.array, | ||
301 : | pending : int ref | ||
302 : | } | ||
303 : | |||
304 : | fun create stack = | ||
305 : | READ{stack =stack, | ||
306 : | loads =A.array(8, NONE), | ||
307 : | pending =ref 0 | ||
308 : | } | ||
309 : | |||
310 : | fun load(READ{pending, loads, ...}, fd, fsize, mem) = | ||
311 : | leunga | 744 | (A.update(loads, fd, SOME(fsize, mem)); |
312 : | leunga | 731 | pending := !pending + 1 |
313 : | ) | ||
314 : | |||
315 : | (* Extract the operand for a register | ||
316 : | * If it has a delayed load associated with it then | ||
317 : | * we perform the load at this time. | ||
318 : | *) | ||
319 : | fun getreg(READ{pending, loads, stack, ...}, isLastUse, fs, code) = | ||
320 : | leunga | 744 | case A.sub(loads, fs) of |
321 : | leunga | 731 | NONE => |
322 : | let val n = ST.st(stack, fs) | ||
323 : | in if isLastUse | ||
324 : | then (ST n, code) | ||
325 : | else let val code = I.FLDL(ST n)::code | ||
326 : | in ST.push(stack, fs); (ST0, code) | ||
327 : | end | ||
328 : | end | ||
329 : | | SOME(fsize, mem) => | ||
330 : | let val code = FLD(fsize, mem)::code | ||
331 : | in A.update(loads, fs, NONE); (* delete load *) | ||
332 : | pending := !pending - 1; | ||
333 : | ST.push(stack, fs); (* fs is now in place *) | ||
334 : | (ST0, code) | ||
335 : | end | ||
336 : | |||
337 : | (* Extract a binary operand. | ||
338 : | * We'll try to fold this into the operand | ||
339 : | *) | ||
340 : | fun getopnd(READ{pending, loads, stack,...}, isLastUse, I.FPR fs, code) = | ||
341 : | leunga | 744 | (case A.sub(loads, fs) of |
342 : | leunga | 731 | NONE => |
343 : | let val n = ST.st(stack, fs) | ||
344 : | in if isLastUse fs (* regmap XXX *) | ||
345 : | then (ST n, code) | ||
346 : | else let val code = I.FLDL(ST n)::code | ||
347 : | in ST.push(stack, fs); (ST0, code) | ||
348 : | end | ||
349 : | end | ||
350 : | | SOME(fsize, mem) => | ||
351 : | (A.update(loads, fs, NONE); (* delete load *) | ||
352 : | pending := !pending - 1; | ||
353 : | if isLastUse fs then (mem, code) | ||
354 : | else let val code = FLD(fsize, mem)::code | ||
355 : | in ST.push(stack, fs); | ||
356 : | (ST0, code) | ||
357 : | end | ||
358 : | ) | ||
359 : | ) | ||
360 : | | getopnd(_, _, ea, code) = (ea, code) | ||
361 : | |||
362 : | fun flush(READ{pending=ref 0,...}, code) = code | ||
363 : | |||
364 : | end (* struct *) | ||
365 : | leunga | 744 | *) |
366 : | leunga | 731 | |
367 : | (*----------------------------------------------------------------------- | ||
368 : | * Module to handle delayed stores. | ||
369 : | * Delayed store does the following: | ||
370 : | * Given an instruction | ||
371 : | * fstore %fp(n), %mem | ||
372 : | * We delay the generation of the store until necessary. | ||
373 : | * This gives us an opportunity to rearrange the order of the stores | ||
374 : | * to eliminate unnecessary fxch. | ||
375 : | *-----------------------------------------------------------------------*) | ||
376 : | leunga | 744 | (* |
377 : | leunga | 731 | structure DelayStore :> |
378 : | sig | ||
379 : | type writebuffer | ||
380 : | val create : ST.stack -> writebuffer | ||
381 : | val flush : writebuffer * I.instruction list -> I.instruction list | ||
382 : | end = | ||
383 : | struct | ||
384 : | datatype writebuffer = | ||
385 : | WRITE of { front : (I.ea * C.cell) list ref, | ||
386 : | back : (I.ea * C.cell) list ref, | ||
387 : | stack : ST.stack, | ||
388 : | pending : int ref | ||
389 : | } | ||
390 : | fun create stack = WRITE{front=ref [], back=ref [], | ||
391 : | stack=stack, pending=ref 0} | ||
392 : | fun flush(WRITE{pending=ref 0,...}, code) = code | ||
393 : | end (* struct *) | ||
394 : | leunga | 744 | *) |
395 : | leunga | 731 | |
396 : | (*----------------------------------------------------------------------- | ||
397 : | * Main routine. | ||
398 : | * | ||
399 : | * Algorithm: | ||
400 : | * 1. Perform liveness analysis. | ||
401 : | * 2. For each fp register, mark all its last use point(s). | ||
402 : | * Registers are popped at their last uses. | ||
403 : | * 3. Rewrite the instructions basic block by basic block. | ||
404 : | * 4. Insert shuffle code at basic block boundaries. | ||
405 : | * When necessary, split critical edges. | ||
406 : | * 5. Sacrifice a goat to make sure things don't go wrong. | ||
407 : | *-----------------------------------------------------------------------*) | ||
408 : | jhr | 925 | fun run(Cfg as G.GRAPH cfg) = |
409 : | let | ||
410 : | val numberOfBlks = #capacity cfg () | ||
411 : | val ENTRY = List.hd (#entries cfg ()) | ||
412 : | val EXIT = List.hd (#exits cfg ()) | ||
413 : | leunga | 731 | |
414 : | jhr | 925 | val getCell = C.getCellsByKind CB.FP |
415 : | (*extract the fp component of cellset*) | ||
416 : | |||
417 : | leunga | 744 | val stTable = A.tabulate(8, fn n => I.ST(C.ST n)) |
418 : | |||
419 : | fun ST n = (if sanityCheck andalso (n < 0 orelse n >= 8) then | ||
420 : | pr("WARNING BAD %st("^i2s n^")\n") | ||
421 : | else (); | ||
422 : | A.sub(stTable, n) | ||
423 : | ) | ||
424 : | |||
425 : | george | 1003 | fun FXCH n = I.fxch{opnd=C.ST n} |
426 : | leunga | 744 | |
427 : | val ST0 = ST 0 | ||
428 : | val ST1 = ST 1 | ||
429 : | george | 1003 | val POP_ST = I.fstpl ST0 (* Instruction to pop an entry *) |
430 : | leunga | 744 | |
431 : | leunga | 731 | (* Dump instructions *) |
432 : | fun dump instrs = | ||
433 : | let val Asm.S.STREAM{emit, ...} = | ||
434 : | AsmStream.withStream (!MLRiscControl.debug_stream) | ||
435 : | Asm.makeStream [] | ||
436 : | in app emit (rev instrs) | ||
437 : | end | ||
438 : | |||
439 : | (* Create assembly of instruction *) | ||
440 : | fun assemble instr = | ||
441 : | let val buf = StringOutStream.mkStreamBuf() | ||
442 : | val stream = StringOutStream.openStringOut buf | ||
443 : | val Asm.S.STREAM{emit, ...} = | ||
444 : | AsmStream.withStream stream Asm.makeStream [] | ||
445 : | leunga | 744 | val _ = emit instr |
446 : | leunga | 731 | val s = StringOutStream.getString buf |
447 : | val n = String.size s | ||
448 : | in if n = 0 then s else String.substring(s, 0, n - 1) | ||
449 : | end | ||
450 : | |||
451 : | (*------------------------------------------------------------------ | ||
452 : | * Perform liveness analysis on the floating point variables | ||
453 : | * P.S. I'm glad I didn't throw away the code liveness code. | ||
454 : | *------------------------------------------------------------------*) | ||
455 : | george | 889 | val defUse = P.defUse CB.FP (* def/use properties *) |
456 : | jhr | 925 | val {liveIn=liveInTable, liveOut=liveOutTable} = Liveness.liveness { |
457 : | defUse=defUse, | ||
458 : | (* updateCell=C.updateCellsByKind CB.FP, *) | ||
459 : | getCell=getCell | ||
460 : | } Cfg | ||
461 : | leunga | 731 | (*------------------------------------------------------------------ |
462 : | * Scan the instructions compute the last uses and dead definitions | ||
463 : | * at each program point. Ideally we can do this during the code | ||
464 : | * rewriting phase. But that's probably too error prone for now. | ||
465 : | *------------------------------------------------------------------*) | ||
466 : | fun computeLastUse(blknum, insns, liveOut) = | ||
467 : | let fun scan([], _, lastUse) = lastUse | ||
468 : | | scan(i::instrs, live, lastUse) = | ||
469 : | let val (d, u) = defUse i | ||
470 : | leunga | 744 | val d = SL.uniq(d)(* definitions *) |
471 : | val u = SL.uniq(u)(* uses *) | ||
472 : | val dead = SL.return(SL.difference(d, live)) | ||
473 : | leunga | 731 | val live = SL.difference(live, d) |
474 : | leunga | 744 | val last = SL.return(SL.difference(u, live)) |
475 : | val live = SL.union(live, u) | ||
476 : | leunga | 731 | val _ = |
477 : | if debug andalso debugLiveness then | ||
478 : | (case last of | ||
479 : | [] => () | ||
480 : | | _ => print(assemble i^"\tlast use="^ | ||
481 : | fregsToString last^"\n") | ||
482 : | ) | ||
483 : | else () | ||
484 : | in scan(instrs, live, (last,dead)::lastUse) | ||
485 : | end | ||
486 : | jhr | 925 | val liveOutSet = SL.uniq liveOut |
487 : | leunga | 731 | val _ = |
488 : | if debug andalso debugLiveness then | ||
489 : | print("LiveOut("^i2s blknum^") = "^ | ||
490 : | leunga | 744 | fregsToString(SL.return liveOutSet)^"\n") |
491 : | leunga | 731 | else () |
492 : | in scan(!insns, liveOutSet, []) | ||
493 : | end | ||
494 : | |||
495 : | (*------------------------------------------------------------------ | ||
496 : | * Temporary work space | ||
497 : | *------------------------------------------------------------------*) | ||
498 : | george | 889 | val {high, low} = C.cellRange CB.FP |
499 : | leunga | 731 | val n = high+1 |
500 : | val lastUseTbl = A.array(n,~1) (* table for marking last uses *) | ||
501 : | val useTbl = A.array(n,~1) (* table for marking uses *) | ||
502 : | |||
503 : | (* %fp register bindings before and after a basic block *) | ||
504 : | jhr | 925 | val bindingsIn = A.array(numberOfBlks, NONE) |
505 : | val bindingsOut = A.array(numberOfBlks, NONE) | ||
506 : | leunga | 731 | val stampCounter = ref ~4096 |
507 : | |||
508 : | (* Edges that need splitting *) | ||
509 : | exception NoEdgesToSplit | ||
510 : | blume | 733 | val edgesToSplit = IntHashTable.mkTable(32, NoEdgesToSplit) |
511 : | val addEdgesToSplit = IntHashTable.insert edgesToSplit | ||
512 : | leunga | 744 | fun lookupEdgesToSplit b = |
513 : | getOpt(IntHashTable.find edgesToSplit b, []) | ||
514 : | leunga | 731 | |
515 : | (*------------------------------------------------------------------ | ||
516 : | * Code for handling bindings between basic block | ||
517 : | *------------------------------------------------------------------*) | ||
518 : | |||
519 : | jhr | 925 | fun splitEdge(title, source, target, e) = |
520 : | leunga | 731 | (if debug andalso !traceOn then |
521 : | jhr | 925 | pr(title^" SPLITTING "^i2s source^"->"^ i2s target^"\n") |
522 : | leunga | 731 | else (); |
523 : | jhr | 925 | addEdgesToSplit(target,(source,target,e)::lookupEdgesToSplit target) |
524 : | leunga | 731 | ) |
525 : | |||
526 : | (* Given a cellset, return a sorted and unique | ||
527 : | * list of elements with all non-physical registers removed | ||
528 : | *) | ||
529 : | jhr | 925 | fun removeNonPhysical celllist = |
530 : | leunga | 744 | let fun loop([], S) = SL.return(SL.uniq S) |
531 : | leunga | 731 | | loop(f::fs, S) = |
532 : | george | 889 | let val fx = CB.registerNum f |
533 : | leunga | 744 | in loop(fs,if fx <= 7 then f::S else S) |
534 : | leunga | 731 | end |
535 : | jhr | 925 | in loop(celllist, []) |
536 : | leunga | 731 | end |
537 : | |||
538 : | (* Given a sorted and unique list of registers, | ||
539 : | * Return a stack with these elements | ||
540 : | *) | ||
541 : | fun newStack fregs = | ||
542 : | let val stack = ST.create() | ||
543 : | george | 889 | in app (fn f => ST.push(stack, CB.registerNum f)) (rev fregs); |
544 : | leunga | 731 | stack |
545 : | end | ||
546 : | |||
547 : | (* | ||
548 : | * This function looks at all the entries on the stack, | ||
549 : | * and generate code to deallocate all the dead values. | ||
550 : | * The stack is updated. | ||
551 : | *) | ||
552 : | fun removeDeadValues(stack, liveSet, code) = | ||
553 : | let val stamp = !stampCounter | ||
554 : | val _ = stampCounter := !stampCounter - 1 | ||
555 : | fun markLive [] = () | ||
556 : | leunga | 744 | | markLive(r::rs) = |
557 : | george | 889 | (A.update(useTbl, CB.registerNum r, stamp); markLive rs) |
558 : | leunga | 731 | fun isLive f = A.sub(useTbl, f) = stamp |
559 : | fun loop(i, depth, code) = | ||
560 : | if i >= depth then code else | ||
561 : | let val f = ST.st(stack, i) | ||
562 : | in if isLive f (* live? *) | ||
563 : | then loop(i+1, depth, code) | ||
564 : | else | ||
565 : | (if debug andalso !traceOn then | ||
566 : | leunga | 744 | pr("REMOVING %f"^i2s f^" in %st("^i2s i^")"^ |
567 : | leunga | 731 | " current stack="^ST.stackToString stack^"\n") |
568 : | else (); | ||
569 : | if i = 0 then | ||
570 : | (ST.pop stack; | ||
571 : | loop(0, depth-1, POP_ST::code) | ||
572 : | ) | ||
573 : | else (ST.xch(stack,0,i); | ||
574 : | ST.pop stack; | ||
575 : | george | 1003 | loop(0, depth-1, I.fstpl(ST i)::code) |
576 : | leunga | 731 | ) |
577 : | ) | ||
578 : | end | ||
579 : | in markLive liveSet; | ||
580 : | loop(0, ST.depth stack, code) | ||
581 : | end | ||
582 : | |||
583 : | |||
584 : | (*------------------------------------------------------------------ | ||
585 : | * Given two stacks, source and target, where the bindings are | ||
586 : | * permutation of each other, generate the minimal number of | ||
587 : | * fxchs to match source with target. | ||
588 : | * | ||
589 : | * Important: source and target MUST be permutations of each other. | ||
590 : | * | ||
591 : | * Essentially, we first decompose the permutation into cycles, | ||
592 : | * and process each cycle. | ||
593 : | *------------------------------------------------------------------*) | ||
594 : | fun shuffle(source, target, code) = | ||
595 : | let val stamp = !stampCounter | ||
596 : | val _ = stampCounter := !stampCounter - 1 | ||
597 : | val permutation = lastUseTbl (* reuse the space *) | ||
598 : | |||
599 : | val _ = if debug andalso !traceOn then | ||
600 : | pr("SHUFFLE "^ST.stackToString source^ | ||
601 : | "->"^ST.stackToString target^"\n") | ||
602 : | else () | ||
603 : | |||
604 : | (* Compute the initial permutation *) | ||
605 : | val n = ST.depth source | ||
606 : | fun computeInitialPermutation(i) = | ||
607 : | if i >= n | ||
608 : | then () | ||
609 : | else let val f = ST.st(source, i) | ||
610 : | val j = ST.fp(target, f) | ||
611 : | in A.update(permutation, j, i); | ||
612 : | computeInitialPermutation(i+1) | ||
613 : | end | ||
614 : | val _ = computeInitialPermutation 0 | ||
615 : | |||
616 : | (* Decompose the initial permutation into cycles. | ||
617 : | * The cycle involving 0 is treated specially. | ||
618 : | *) | ||
619 : | val visited = useTbl | ||
620 : | fun isVisited i = A.sub(visited,i) = stamp | ||
621 : | fun markAsVisited i = A.update(visited,i,stamp) | ||
622 : | fun decomposeCycles(i, cycle0, cycles) = | ||
623 : | if i >= n then (cycle0, cycles) | ||
624 : | else if isVisited i orelse | ||
625 : | A.sub(permutation, i) = i (* trivial cycle *) | ||
626 : | then decomposeCycles(i+1, cycle0, cycles) | ||
627 : | else let fun makeCycle(j, cycle, zero) = | ||
628 : | let val k = A.sub(permutation, j) | ||
629 : | val cycle = j::cycle | ||
630 : | val zero = zero orelse j = 0 | ||
631 : | in markAsVisited j; | ||
632 : | if k = i then (cycle, zero) | ||
633 : | else makeCycle(k, cycle, zero) | ||
634 : | end | ||
635 : | val (cycle, zero) = makeCycle(i, [], false) | ||
636 : | in if zero then decomposeCycles(i+1, [cycle], cycles) | ||
637 : | else decomposeCycles(i+1, cycle0, cycle::cycles) | ||
638 : | end | ||
639 : | |||
640 : | val (cycle0, cycles) = decomposeCycles(0, [], []) | ||
641 : | |||
642 : | (* | ||
643 : | * Generate shuffle for a cycle that does not involve 0. | ||
644 : | * Given a cycle (c_1, ..., c_k), we generate this code: | ||
645 : | * fxch %st(c_1), | ||
646 : | * fxch %st(c_2), | ||
647 : | * ... | ||
648 : | * fxch %st(c_k), | ||
649 : | * fxch %st(c_1) | ||
650 : | *) | ||
651 : | fun genxch([], code) = code | ||
652 : | | genxch(c::cs, code) = genxch(cs, FXCH c::code) | ||
653 : | |||
654 : | fun gen([], code) = error "shuffle.gen" | ||
655 : | | gen(cs as (c::_), code) = FXCH c::genxch(cs, code) | ||
656 : | |||
657 : | (* | ||
658 : | * Generate shuffle for a cycle that involves 0. | ||
659 : | * Given a cycle (c_1,...,c_k) we first shuffle this to | ||
660 : | * an equivalent cycle (c_1, ..., c_k) where c'_k = 0, | ||
661 : | * then we generate this code: | ||
662 : | * fxch %st(c'_1), | ||
663 : | * fxch %st(c'_2), | ||
664 : | * ... | ||
665 : | * fxch %st(c'_{k-1}), | ||
666 : | *) | ||
667 : | fun gen0([], code) = error "shuffle.gen0" | ||
668 : | | gen0(cs, code) = | ||
669 : | let fun rearrange(0::cs, cs') = cs@rev cs' | ||
670 : | | rearrange(c::cs, cs') = rearrange(cs, c::cs') | ||
671 : | | rearrange([], _) = error "shuffle.rearrange" | ||
672 : | val cs = rearrange(cs, []) | ||
673 : | in genxch(cs, code) | ||
674 : | end | ||
675 : | |||
676 : | (* | ||
677 : | * Generate code. Must process the non-zero cycles first. | ||
678 : | *) | ||
679 : | val code = List.foldr gen code cycles | ||
680 : | val code = List.foldr gen0 code cycle0 | ||
681 : | in code | ||
682 : | end (* shuffle *) | ||
683 : | |||
684 : | (*------------------------------------------------------------------ | ||
685 : | * Insert code at the end of a basic block. | ||
686 : | * Make sure we put code in front of a transfer instruction | ||
687 : | *------------------------------------------------------------------*) | ||
688 : | fun insertAtEnd(insns, code) = | ||
689 : | (case insns of | ||
690 : | [] => code | ||
691 : | | jmp::rest => | ||
692 : | if P.instrKind jmp = P.IK_JUMP then | ||
693 : | jmp::code@rest | ||
694 : | else | ||
695 : | code@insns | ||
696 : | ) | ||
697 : | |||
698 : | (*------------------------------------------------------------------ | ||
699 : | * Magic for inserting shuffle code at the end of a basic block | ||
700 : | *------------------------------------------------------------------*) | ||
701 : | jhr | 925 | fun shuffleOut(stackOut, insns, b, block, liveOut) = |
702 : | let | ||
703 : | val liveOut = removeNonPhysical(liveOut) | ||
704 : | leunga | 731 | |
705 : | (* Generate code that remove unnecessary values *) | ||
706 : | val code = removeDeadValues(stackOut, liveOut, []) | ||
707 : | |||
708 : | fun done(stackOut, insns, code) = | ||
709 : | (A.update(bindingsOut,b,SOME stackOut); | ||
710 : | insertAtEnd(insns, code) | ||
711 : | ) | ||
712 : | |||
713 : | (* Generate code that shuffle values from source to target *) | ||
714 : | fun match(source, target) = | ||
715 : | done(target, insns, shuffle(source, target, [])) | ||
716 : | |||
717 : | (* Generate code that shuffle values from source to liveOut *) | ||
718 : | fun matchLiveOut() = | ||
719 : | case liveOut of | ||
720 : | [] => done(stackOut, insns, code) | ||
721 : | | _ => match(stackOut, newStack liveOut) | ||
722 : | |||
723 : | (* With multiple successors, find out which one we | ||
724 : | * should connect to. Choose the one from the block that | ||
725 : | * follows from this one, if that exists, or else choose | ||
726 : | * from the edge with the highest frequency. | ||
727 : | *) | ||
728 : | fun find([], _, id, best) = (id, best) | ||
729 : | jhr | 925 | | find((_, target, _)::edges, highestFreq, id, best) = |
730 : | let val CFG.BLOCK{freq, ...} = #node_info cfg target | ||
731 : | in if target = b+1 then (target, A.sub(bindingsIn, target)) | ||
732 : | else (case A.sub(bindingsIn, target) of | ||
733 : | NONE => find(edges, highestFreq, id, best) | ||
734 : | | this as SOME stack => | ||
735 : | if highestFreq < !freq then | ||
736 : | find(edges, !freq, target, this) | ||
737 : | else | ||
738 : | find(edges, highestFreq, id, best) | ||
739 : | ) | ||
740 : | end | ||
741 : | leunga | 731 | |
742 : | jhr | 925 | (* |
743 : | * Split all edges source->target except omitThis. | ||
744 : | *) | ||
745 : | fun splitAllEdgesExcept([], omitThis) = () | ||
746 : | | splitAllEdgesExcept((source,target,e)::edges, omitThis) = | ||
747 : | if target = EXIT then error "can't split exit edge!" | ||
748 : | else | ||
749 : | (if target <> omitThis andalso | ||
750 : | target <= b andalso (* XXX *) | ||
751 : | target <> ENTRY | ||
752 : | then splitEdge("ShuffleOut",source,target,e) else (); | ||
753 : | splitAllEdgesExcept(edges, omitThis) | ||
754 : | leunga | 731 | ) |
755 : | |||
756 : | (* Just one successor; | ||
757 : | * try to match the bindings of the successor if it exist. | ||
758 : | *) | ||
759 : | jhr | 925 | fun matchIt succ = |
760 : | let val (succBlock, target) = find(succ, ~1, ~1, NONE) | ||
761 : | in splitAllEdgesExcept(succ, succBlock); | ||
762 : | case target of | ||
763 : | SOME stackIn => match(stackOut, stackIn) | ||
764 : | | NONE => done(stackOut,insns,code) | ||
765 : | end | ||
766 : | |||
767 : | in case #out_edges cfg b of | ||
768 : | [] => matchLiveOut() | ||
769 : | | succ as [(_,target,_)] => | ||
770 : | if target = EXIT then matchLiveOut() | ||
771 : | else matchIt succ | ||
772 : | | succ => matchIt succ | ||
773 : | leunga | 731 | end (* shuffleOut *) |
774 : | |||
775 : | (*------------------------------------------------------------------ | ||
776 : | * Compute the initial fp stack bindings for basic block b. | ||
777 : | *------------------------------------------------------------------*) | ||
778 : | jhr | 925 | fun shuffleIn(b, block, liveIn) = |
779 : | let | ||
780 : | val liveInSet = removeNonPhysical liveIn | ||
781 : | leunga | 731 | |
782 : | (* With multiple predecessors, find out which one we | ||
783 : | * should connect to. Choose the one from the block that | ||
784 : | * falls into this one, if that exists, or else choose | ||
785 : | * from the edge with the highest frequency. | ||
786 : | *) | ||
787 : | fun find([], _, best) = best | ||
788 : | jhr | 925 | | find((source, _, _)::edges, highestFreq, best) = |
789 : | george | 984 | let val CFG.BLOCK{freq, ...} = #node_info cfg source |
790 : | jhr | 925 | in case A.sub(bindingsOut, source) of |
791 : | NONE => find(edges, highestFreq, best) | ||
792 : | | this as SOME stack => | ||
793 : | george | 984 | if source = b-1 |
794 : | then this (* falls into b *) | ||
795 : | else if highestFreq < !freq then find(edges, !freq, this) | ||
796 : | else find(edges, highestFreq, best) | ||
797 : | jhr | 925 | end |
798 : | leunga | 731 | |
799 : | fun splitAllDoneEdges [] = () | ||
800 : | jhr | 925 | | splitAllDoneEdges ((source, target, e)::edges) = |
801 : | (if source < b andalso | ||
802 : | source <> ENTRY andalso | ||
803 : | source <> EXIT | ||
804 : | then splitEdge("ShuffleIn", source, target, e) else (); | ||
805 : | leunga | 731 | splitAllDoneEdges edges |
806 : | ) | ||
807 : | |||
808 : | leunga | 744 | (* The initial stack bindings are determined by the live set. |
809 : | leunga | 731 | * No compensation code is needed. |
810 : | *) | ||
811 : | fun fromLiveIn() = | ||
812 : | let val stackIn = | ||
813 : | case liveInSet of | ||
814 : | [] => ST.stack0 | ||
815 : | | _ => | ||
816 : | jhr | 925 | (pr("liveIn="^celllistToString liveIn^"\n"); |
817 : | leunga | 731 | newStack liveInSet |
818 : | ) | ||
819 : | val stackOut = ST.copy stackIn | ||
820 : | in (stackIn, stackOut, []) | ||
821 : | end | ||
822 : | |||
823 : | jhr | 925 | val pred = #in_edges cfg b |
824 : | |||
825 : | leunga | 731 | val (stackIn, stackOut, code) = |
826 : | jhr | 925 | case find(pred, ~1, NONE) of |
827 : | NONE => (splitAllDoneEdges(pred); fromLiveIn()) | ||
828 : | leunga | 731 | | SOME stackIn' => |
829 : | jhr | 925 | (case pred of |
830 : | leunga | 731 | [_] => (* one predecessor *) |
831 : | (* Use the bindings as from the previous block | ||
832 : | * We first have to deallocate all unused values. | ||
833 : | *) | ||
834 : | let val stackOut = ST.copy stackIn' | ||
835 : | (* Clean the stack of unused entries *) | ||
836 : | val code = removeDeadValues(stackOut, liveInSet, []) | ||
837 : | in (stackIn', stackOut, code) end | ||
838 : | jhr | 925 | | pred => (* more than one predecessors *) |
839 : | leunga | 731 | let val stackIn = ST.copy stackIn' |
840 : | val code = removeDeadValues(stackIn, liveInSet, []) | ||
841 : | val stackOut = ST.copy stackIn | ||
842 : | in (* If we have to generate code to deallocate | ||
843 : | * the stack then we have split the edge. | ||
844 : | *) | ||
845 : | case code of | ||
846 : | [] => () | ||
847 : | jhr | 925 | | _ => splitAllDoneEdges(pred); |
848 : | leunga | 731 | (stackIn, stackOut, []) |
849 : | end | ||
850 : | ) | ||
851 : | in A.update(bindingsIn, b, SOME stackIn); | ||
852 : | A.update(bindingsOut, b, SOME stackOut); | ||
853 : | (stackIn, stackOut, code) | ||
854 : | end | ||
855 : | |||
856 : | (*------------------------------------------------------------------ | ||
857 : | * Code for patching up critical edges. | ||
858 : | * The trick is finding a good place to insert the critical edges. | ||
859 : | jhr | 925 | * Let's call an edge x->y that requires compensation |
860 : | * code c to be inserted an candidate edge. We write this as x->y(c) | ||
861 : | * | ||
862 : | * Here are the heuristics that we use to improve the final code: | ||
863 : | * | ||
864 : | * 1. Given two candidate edges a->x(c1) and b->x(c2) where c1=c2 | ||
865 : | * then we can merge the two copies of compensation code. | ||
866 : | * This is quite common. This generalizes to any number of edges. | ||
867 : | * | ||
868 : | * 2. Given two candidate edges a->x(c1) and b->x(c2) and where | ||
869 : | * c1 and c2 are pops, we can partially share c1 and c2. | ||
870 : | * Currently, I think I only recognize this case when | ||
871 : | * x has no fp registers live-in. | ||
872 : | * | ||
873 : | * 3. Given two candidate edges a->x(c1) and b->x(c2), | ||
874 : | * if a->x has a higher frequency then put the compensation | ||
875 : | * code in front of x (so that it falls through into x) | ||
876 : | * whenever possible. | ||
877 : | * | ||
878 : | * As you can see, the voodoo is strong here. | ||
879 : | * | ||
880 : | * The routine has two main phases: | ||
881 : | * 1. Determine the compensation code by applying the heuristics | ||
882 : | * above. | ||
883 : | * 2. Then insert them and rebuild the cfg by renaming all block | ||
884 : | * ids. This is currently necessary to keep the layout order | ||
885 : | * consistent with the order of the id. | ||
886 : | leunga | 731 | *------------------------------------------------------------------*) |
887 : | jhr | 925 | fun repairCriticalEdges(Cfg as G.GRAPH cfg) = |
888 : | leunga | 731 | let (* Data structure for recording critical edge splitting info *) |
889 : | datatype compensationCode = | ||
890 : | NEWEDGE of | ||
891 : | jhr | 925 | {label:L.label, (* label of new block *) |
892 : | entries:CFG.edge list ref, (* edges going into this code *) | ||
893 : | code:I.instruction list, (* code *) | ||
894 : | leunga | 731 | comment:an |
895 : | } | ||
896 : | |||
897 : | val cleanup = [#create MLRiscAnnotations.COMMENT "cleanup edge"] | ||
898 : | val critical = [#create MLRiscAnnotations.COMMENT "critical edge"] | ||
899 : | |||
900 : | exception Nothing | ||
901 : | |||
902 : | (* Repair code table; mapping from block id -> compensation code *) | ||
903 : | blume | 733 | val repairCodeTable = IntHashTable.mkTable(32, Nothing) |
904 : | val addRepairCode = IntHashTable.insert repairCodeTable | ||
905 : | leunga | 744 | fun lookupRepairCode b = |
906 : | getOpt(IntHashTable.find repairCodeTable b,[]) | ||
907 : | leunga | 731 | |
908 : | (* Repair code table; mapping from block id -> compensation code | ||
909 : | jhr | 925 | * These must be relocated ... |
910 : | leunga | 731 | *) |
911 : | blume | 733 | val repairCodeTable' = IntHashTable.mkTable(32, Nothing) |
912 : | val addRepairCode' = IntHashTable.insert repairCodeTable' | ||
913 : | leunga | 744 | fun lookupRepairCode' b = |
914 : | getOpt(IntHashTable.find repairCodeTable' b,[]) | ||
915 : | leunga | 731 | |
916 : | jhr | 925 | (* Does the given block falls thru from the previous block? |
917 : | * If the previous block is ENTRY then also consider this to be true | ||
918 : | *) | ||
919 : | fun isFallsThru b = | ||
920 : | case #in_edges cfg b of | ||
921 : | [(b',_,_)] => (case CFG.fallsThruTo(Cfg,b') of | ||
922 : | SOME b'' => b'' = b | ||
923 : | | NONE => b' = ENTRY | ||
924 : | ) | ||
925 : | | _ => false | ||
926 : | leunga | 731 | |
927 : | (* Create jump instruction to a block *) | ||
928 : | jhr | 925 | fun jump(CFG.BLOCK{labels, ...}) = |
929 : | (case !labels of | ||
930 : | leunga | 731 | [] => error "no label to target of critical edge!" |
931 : | | l::_ => P.jump l | ||
932 : | ) | ||
933 : | |||
934 : | (* | ||
935 : | * Special case: target block has stack depth of 0. | ||
936 : | * Just generate code that pop entries from the sources. | ||
937 : | * To make things interesting, we try to share code among | ||
938 : | * all the critical edges. | ||
939 : | *) | ||
940 : | fun genPoppingCode(_, []) = () | ||
941 : | jhr | 925 | | genPoppingCode(targetBlk, edges as (_,target,_)::_) = |
942 : | let val entries = | ||
943 : | map (fn edge as (source, _, _) => | ||
944 : | let val n = ST.depth(valOf(A.sub(bindingsOut,source))) | ||
945 : | in (n, edge) end | ||
946 : | leunga | 731 | ) edges |
947 : | jhr | 925 | |
948 : | leunga | 731 | (* Ordered by increasing stack height *) |
949 : | jhr | 925 | val entries = |
950 : | ListMergeSort.sort (fn ((n,_),(m,_)) => n > m) entries | ||
951 : | leunga | 731 | |
952 : | val relocate = isFallsThru target | ||
953 : | |||
954 : | fun pop(0, code) = code | ||
955 : | | pop(n, code) = pop(n-1,POP_ST::code) | ||
956 : | |||
957 : | fun makeCode(popCount, rest) = | ||
958 : | let val code = pop(popCount, []) | ||
959 : | in case rest of | ||
960 : | jhr | 925 | [] => if relocate then |
961 : | jump(#node_info cfg target)::code | ||
962 : | leunga | 731 | else code |
963 : | | _ => code | ||
964 : | end | ||
965 : | |||
966 : | (* Generate code, share code between edges that | ||
967 : | * have to pop the same number of elements | ||
968 : | *) | ||
969 : | fun gen([], h, code) = code | ||
970 : | jhr | 925 | | gen((n,e)::rest, _, []) = |
971 : | leunga | 731 | gen(rest, n, |
972 : | jhr | 925 | [NEWEDGE{label=L.anon(), |
973 : | entries=ref [e], | ||
974 : | code=makeCode(n,rest), | ||
975 : | comment=cleanup | ||
976 : | } | ||
977 : | ]) | ||
978 : | | gen((n,e)::rest, h, all as (NEWEDGE{entries, ...}::_)) = | ||
979 : | george | 1052 | gen(rest,n, |
980 : | leunga | 731 | if n = h then |
981 : | jhr | 925 | (entries := e :: !entries; all) |
982 : | leunga | 731 | else |
983 : | jhr | 925 | NEWEDGE{label=L.anon(), |
984 : | entries=ref [e], | ||
985 : | leunga | 731 | code=makeCode(n-h,rest), |
986 : | jhr | 925 | comment=cleanup |
987 : | }::all | ||
988 : | leunga | 731 | ) |
989 : | jhr | 925 | val repairCode = gen(entries, 0, []) |
990 : | leunga | 731 | in (if relocate then addRepairCode' else addRepairCode) |
991 : | jhr | 925 | (target, repairCode) |
992 : | leunga | 731 | end |
993 : | |||
994 : | (* The general case: | ||
995 : | * Remove dead values, then | ||
996 : | * Shuffle. | ||
997 : | *) | ||
998 : | jhr | 925 | fun genRepairCode(target, targetBlk, stackIn, edges) = |
999 : | leunga | 731 | let val repairList = ref [] |
1000 : | val repairCount = ref 0 | ||
1001 : | jhr | 925 | val SOME stackIn = A.sub(bindingsIn, target) |
1002 : | fun repair(edge as (source, _, _)) = | ||
1003 : | let val SOME stackOut' = A.sub(bindingsOut, source) | ||
1004 : | leunga | 731 | fun createNewRepairEdge() = |
1005 : | let val stackOut = ST.copy stackOut' | ||
1006 : | jhr | 925 | val liveIn = IntHashTable.lookup liveInTable target |
1007 : | leunga | 731 | val liveInSet = removeNonPhysical liveIn |
1008 : | val _ = | ||
1009 : | if debug then | ||
1010 : | jhr | 925 | pr("LiveIn = "^celllistToString liveIn^"\n") |
1011 : | leunga | 731 | else () |
1012 : | |||
1013 : | (* deallocate unused values *) | ||
1014 : | val code = removeDeadValues(stackOut, liveInSet, []) | ||
1015 : | (* shuffle values *) | ||
1016 : | val code = shuffle(stackOut, stackIn, code) | ||
1017 : | fun addNewEdge() = | ||
1018 : | let (* Do we need to relocate this block? *) | ||
1019 : | val relocate = !repairCount > 0 orelse | ||
1020 : | jhr | 925 | isFallsThru target |
1021 : | andalso source + 1 <> target | ||
1022 : | leunga | 731 | |
1023 : | (* add a jump to the target block *) | ||
1024 : | jhr | 925 | val code = if relocate then jump targetBlk::code |
1025 : | leunga | 731 | else code |
1026 : | |||
1027 : | val repairCode = | ||
1028 : | jhr | 925 | NEWEDGE{label=L.anon(), |
1029 : | entries=ref [edge], | ||
1030 : | code=code, | ||
1031 : | comment=critical | ||
1032 : | } | ||
1033 : | leunga | 731 | in repairCount := !repairCount + 1; |
1034 : | repairList := (repairCode, stackOut') | ||
1035 : | :: !repairList; | ||
1036 : | if relocate then | ||
1037 : | jhr | 925 | addRepairCode'(target, |
1038 : | repairCode::lookupRepairCode' target) | ||
1039 : | leunga | 731 | else |
1040 : | jhr | 925 | addRepairCode(target, |
1041 : | repairCode::lookupRepairCode target) | ||
1042 : | leunga | 731 | end |
1043 : | jhr | 925 | in case #out_edges cfg source of |
1044 : | [(_,j,_)] => | ||
1045 : | if j = target then (*insert code at predecessor*) | ||
1046 : | let val CFG.BLOCK{insns,...} = | ||
1047 : | #node_info cfg source | ||
1048 : | in insns := insertAtEnd(!insns, code) | ||
1049 : | end | ||
1050 : | else | ||
1051 : | addNewEdge() | ||
1052 : | leunga | 731 | | _ => addNewEdge() |
1053 : | end | ||
1054 : | |||
1055 : | fun shareRepairEdge [] = false | ||
1056 : | jhr | 925 | | shareRepairEdge |
1057 : | ((NEWEDGE{entries,...},stackOut'')::rest) = | ||
1058 : | leunga | 731 | if ST.equal(stackOut'', stackOut') then |
1059 : | jhr | 925 | (entries := edge :: !entries; true) |
1060 : | leunga | 731 | else shareRepairEdge rest |
1061 : | |||
1062 : | in if shareRepairEdge(!repairList) then () | ||
1063 : | else createNewRepairEdge() | ||
1064 : | end | ||
1065 : | in app repair edges | ||
1066 : | end | ||
1067 : | |||
1068 : | (* | ||
1069 : | jhr | 925 | * Code to split critical edges entering block target |
1070 : | leunga | 731 | *) |
1071 : | jhr | 925 | fun split(target, edges) = |
1072 : | let val SOME stackIn = A.sub(bindingsIn,target) | ||
1073 : | fun log(s, t, e) = | ||
1074 : | let val SOME stackOut = A.sub(bindingsOut,s) | ||
1075 : | leunga | 731 | in pr("SPLIT "^i2s s^"->"^i2s t^" "^ |
1076 : | ST.stackToString stackOut^"->"^ | ||
1077 : | ST.stackToString stackIn^"\n") | ||
1078 : | end | ||
1079 : | val _ = if debug andalso !traceOn then app log edges else () | ||
1080 : | jhr | 925 | val targetBlk = #node_info cfg target |
1081 : | in if ST.depth stackIn = 0 then genPoppingCode(targetBlk,edges) | ||
1082 : | else genRepairCode(target, targetBlk, stackIn, edges) | ||
1083 : | leunga | 731 | end |
1084 : | |||
1085 : | jhr | 925 | |
1086 : | (* | ||
1087 : | * Create a new empty cfg with the same graph info as the old one. | ||
1088 : | *) | ||
1089 : | val Cfg' as G.GRAPH cfg' = CFG.cfg (#graph_info cfg) | ||
1090 : | |||
1091 : | (* | ||
1092 : | * Renumber all the blocks and insert compensation code at the | ||
1093 : | leunga | 731 | * right places. |
1094 : | *) | ||
1095 : | fun renumberBlocks() = | ||
1096 : | jhr | 925 | let (* Mapping from label to new node ids *) |
1097 : | val labelMap = HashTable.mkTable (L.hash,L.same) (32, Nothing) | ||
1098 : | val mapLabelToId = HashTable.insert labelMap | ||
1099 : | leunga | 731 | |
1100 : | jhr | 925 | (* Mapping from old id to new id *) |
1101 : | val idMap = IntHashTable.mkTable (32, Nothing) | ||
1102 : | val mapOldIdToNewId = IntHashTable.insert idMap | ||
1103 : | val oldIdToNewId = IntHashTable.lookup idMap | ||
1104 : | leunga | 731 | |
1105 : | jhr | 925 | (* Retarget a jump instruction to label l *) |
1106 : | george | 1003 | fun retargetJump(I.INSTR(I.JMP(I.ImmedLabel(T.LABEL _), [_])), l) = |
1107 : | I.jmp(I.ImmedLabel(T.LABEL l), [l]) | ||
1108 : | | retargetJump(I.INSTR(I.JCC{cond,opnd=I.ImmedLabel(T.LABEL _)}),l)= | ||
1109 : | I.jcc{cond=cond,opnd=I.ImmedLabel(T.LABEL l)} | ||
1110 : | jhr | 925 | | retargetJump(I.ANNOTATION{i,a},l) = |
1111 : | I.ANNOTATION{i=retargetJump(i,l),a=a} | ||
1112 : | | retargetJump(_,l) = error "retargetJump" | ||
1113 : | leunga | 731 | |
1114 : | jhr | 925 | (* |
1115 : | * Given a candidate edge, generate compensation code. | ||
1116 : | *) | ||
1117 : | fun transRepair(n, []) = n | ||
1118 : | | transRepair(n, NEWEDGE{label,entries,code,comment}::rest) = | ||
1119 : | let val this = | ||
1120 : | CFG.BLOCK{id=n, | ||
1121 : | kind=CFG.NORMAL, | ||
1122 : | freq=ref 0, (* XXX Wrong frequency! *) | ||
1123 : | labels=ref [label], | ||
1124 : | insns=ref code, | ||
1125 : | george | 984 | annotations=ref comment, |
1126 : | align=ref NONE | ||
1127 : | jhr | 925 | } |
1128 : | |||
1129 : | (* | ||
1130 : | * Update the instructions to predecessors of this edge. | ||
1131 : | *) | ||
1132 : | fun retarget(CFG.BLOCK{kind=CFG.START,...}) = () | ||
1133 : | | retarget(CFG.BLOCK{insns as ref(jmp::rest), ...}) = | ||
1134 : | insns := retargetJump(jmp, label)::rest | ||
1135 : | | retarget _ = error "retarget" | ||
1136 : | |||
1137 : | fun retargetEntries(pred,_,CFG.EDGE{a,...}) = | ||
1138 : | (retarget(#node_info cfg pred); | ||
1139 : | a := TargetMovedTo n :: !a | ||
1140 : | ) | ||
1141 : | |||
1142 : | leunga | 731 | in if debug andalso !traceOn then |
1143 : | pr("Inserting critical edge at block "^i2s n^" "^ | ||
1144 : | jhr | 925 | L.toString label^"\n") |
1145 : | leunga | 731 | else (); |
1146 : | jhr | 925 | #add_node cfg' (n, this); (* insert block *) |
1147 : | mapLabelToId(label, n); | ||
1148 : | app retargetEntries (!entries); | ||
1149 : | transRepair(n+1, rest) | ||
1150 : | leunga | 731 | end |
1151 : | |||
1152 : | jhr | 925 | (* |
1153 : | * Renumber all the blocks and insert repair code. | ||
1154 : | *) | ||
1155 : | fun renumber(n, [], repairCode') = transRepair(n, repairCode') | ||
1156 : | | renumber(n, (blknum, block as | ||
1157 : | george | 984 | CFG.BLOCK{kind,annotations,insns,freq,align,labels, ...})::rest, |
1158 : | jhr | 925 | repairCode') = |
1159 : | leunga | 731 | let (* If we have outstanding repair code and this is |
1160 : | * NOT a fallsthru entry, then insert them here. | ||
1161 : | *) | ||
1162 : | jhr | 925 | val (n, repairCode') = |
1163 : | leunga | 731 | case repairCode' of |
1164 : | jhr | 925 | [] => (n, []) |
1165 : | | _ => if isFallsThru blknum then | ||
1166 : | (n, repairCode') | ||
1167 : | leunga | 731 | else |
1168 : | jhr | 925 | (transRepair(n, repairCode'), []) |
1169 : | leunga | 731 | |
1170 : | (* Insert non-relocatable repair code *) | ||
1171 : | val repairCode = lookupRepairCode blknum | ||
1172 : | jhr | 925 | val n = transRepair(n, repairCode) |
1173 : | leunga | 731 | |
1174 : | (* Create this block *) | ||
1175 : | jhr | 925 | val this = CFG.BLOCK{id=n, |
1176 : | kind=kind, | ||
1177 : | freq=freq, | ||
1178 : | george | 984 | align=align, |
1179 : | jhr | 925 | labels=labels, |
1180 : | insns=insns, | ||
1181 : | annotations=annotations | ||
1182 : | } | ||
1183 : | leunga | 731 | |
1184 : | (* Insert new relocatable repair code *) | ||
1185 : | val repairCode' = repairCode' @ | ||
1186 : | lookupRepairCode' blknum | ||
1187 : | |||
1188 : | jhr | 925 | (* Insert labels that map to this block *) |
1189 : | val _ = app (fn l => mapLabelToId(l, n)) (!labels) | ||
1190 : | leunga | 731 | |
1191 : | jhr | 925 | (* Insert block *) |
1192 : | val _ = #add_node cfg' (n, this) | ||
1193 : | val _ = mapOldIdToNewId(blknum, n) | ||
1194 : | leunga | 731 | |
1195 : | jhr | 925 | in case kind of |
1196 : | CFG.START => #set_entries cfg' [n] | ||
1197 : | | CFG.STOP => #set_exits cfg' [n] | ||
1198 : | | _ => (); | ||
1199 : | renumber(n+1, rest, repairCode') | ||
1200 : | end | ||
1201 : | leunga | 731 | |
1202 : | jhr | 925 | (* Do all the blocks *) |
1203 : | val n = renumber(0, #nodes cfg (), []) | ||
1204 : | leunga | 731 | |
1205 : | jhr | 925 | val [newExit] = #exits cfg' () |
1206 : | leunga | 731 | |
1207 : | jhr | 925 | (* |
1208 : | * Given a label, finds out which block it targets. | ||
1209 : | * If not found then it means the block is escaping. | ||
1210 : | *) | ||
1211 : | val findLabel = HashTable.find labelMap | ||
1212 : | fun labelToBlockId l = getOpt(findLabel l, newExit) | ||
1213 : | leunga | 731 | |
1214 : | jhr | 925 | fun hasJump x = |
1215 : | let val CFG.BLOCK{insns, ...} = #node_info cfg' x | ||
1216 : | in case !insns of | ||
1217 : | [] => false | ||
1218 : | | jmp::_ => P.instrKind jmp = P.IK_JUMP | ||
1219 : | end | ||
1220 : | leunga | 731 | |
1221 : | jhr | 925 | (* |
1222 : | * Now rebuild all the old edges. | ||
1223 : | * For each edge, makes sure the target hasn't been moved. | ||
1224 : | *) | ||
1225 : | fun renameEdge(x, y, e as CFG.EDGE{a,k,w,...}) = | ||
1226 : | let val x = oldIdToNewId x | ||
1227 : | val (z, e) = | ||
1228 : | case !a of | ||
1229 : | TargetMovedTo z::an => | ||
1230 : | let val e = | ||
1231 : | case k of | ||
1232 : | (CFG.FALLSTHRU | CFG.BRANCH false) => | ||
1233 : | if hasJump x then | ||
1234 : | CFG.EDGE{a=a, w=w, k=CFG.JUMP} | ||
1235 : | else e | ||
1236 : | | _ => e | ||
1237 : | in a := an; (* remove the marker *) | ||
1238 : | (z, e) | ||
1239 : | end | ||
1240 : | | _ => (oldIdToNewId y, e) | ||
1241 : | in #add_edge cfg' (x,z,e) | ||
1242 : | end | ||
1243 : | |||
1244 : | val _ = #forall_edges cfg renameEdge | ||
1245 : | leunga | 731 | |
1246 : | jhr | 925 | (* |
1247 : | * Now add new edges x->y where x is a new compensation block | ||
1248 : | *) | ||
1249 : | fun addNewEdge(NEWEDGE{label, code, entries, ...}) = | ||
1250 : | let val x = labelToBlockId label | ||
1251 : | val (y, k) = | ||
1252 : | case code of | ||
1253 : | [] => (x + 1, CFG.FALLSTHRU) (* next block *) | ||
1254 : | | jmp::_ => | ||
1255 : | if P.instrKind jmp = P.IK_JUMP then | ||
1256 : | (case P.branchTargets jmp of | ||
1257 : | [P.LABELLED l] => (labelToBlockId l, CFG.JUMP) | ||
1258 : | | _ => error "addNewEdge where is the target?" | ||
1259 : | ) | ||
1260 : | else | ||
1261 : | (x + 1, CFG.FALLSTHRU) | ||
1262 : | (* compute weight *) | ||
1263 : | val w = List.foldr (fn ((_,_,CFG.EDGE{w,...}),n) => !w+n) | ||
1264 : | 0 (!entries) | ||
1265 : | in #add_edge cfg' (x, y, CFG.EDGE{a=ref [], w=ref w, k=k}) | ||
1266 : | end | ||
1267 : | leunga | 731 | |
1268 : | jhr | 925 | val addNewEdges = app addNewEdge |
1269 : | val _ = IntHashTable.app addNewEdges repairCodeTable | ||
1270 : | val _ = IntHashTable.app addNewEdges repairCodeTable' | ||
1271 : | leunga | 731 | |
1272 : | jhr | 925 | in Cfg' |
1273 : | leunga | 731 | end |
1274 : | |||
1275 : | jhr | 925 | in IntHashTable.appi split edgesToSplit; |
1276 : | leunga | 744 | renumberBlocks() |
1277 : | jhr | 925 | end |
1278 : | leunga | 731 | |
1279 : | (*------------------------------------------------------------------ | ||
1280 : | jhr | 925 | * Process all blocks which are not the entry or the exit |
1281 : | leunga | 731 | *------------------------------------------------------------------*) |
1282 : | jhr | 925 | val stamp = ref 0 |
1283 : | fun rewriteAllBlocks (_, CFG.BLOCK{kind=CFG.START, ...}) = () | ||
1284 : | | rewriteAllBlocks (_, CFG.BLOCK{kind=CFG.STOP, ...}) = () | ||
1285 : | | rewriteAllBlocks | ||
1286 : | (blknum, block as CFG.BLOCK{insns, labels, annotations, ...}) = | ||
1287 : | let val _ = | ||
1288 : | if debug andalso !debugOn then | ||
1289 : | app (fn l => pr(L.toString l^":\n")) (!labels) | ||
1290 : | else (); | ||
1291 : | val liveIn = HT.lookup liveInTable blknum | ||
1292 : | val liveOut = HT.lookup liveOutTable blknum | ||
1293 : | val st = rewrite(!stamp, blknum, block, | ||
1294 : | leunga | 731 | insns, liveIn, liveOut, |
1295 : | jhr | 925 | annotations) |
1296 : | in stamp := st (* update stamp *) | ||
1297 : | leunga | 731 | end |
1298 : | |||
1299 : | (*------------------------------------------------------------------ | ||
1300 : | * Translate code within a basic block. | ||
1301 : | * Each instruction is given a unique stamp for identifying last | ||
1302 : | * uses. | ||
1303 : | *------------------------------------------------------------------*) | ||
1304 : | and rewrite(stamp, blknum, block, insns, liveIn, liveOut, | ||
1305 : | jhr | 925 | annotations) = |
1306 : | let val (stackIn, stack, code) = shuffleIn(blknum, block, liveIn) | ||
1307 : | leunga | 731 | |
1308 : | (* Dump instructions when encountering a bug *) | ||
1309 : | fun bug msg = | ||
1310 : | (pr("-------- bug in block "^i2s blknum^" ----\n"); | ||
1311 : | dump(!insns); | ||
1312 : | error msg | ||
1313 : | ) | ||
1314 : | |||
1315 : | fun loop(stamp, [], [], code) = (stamp, code) | ||
1316 : | | loop(stamp, instr::rest, (lastUse,dead)::lastUses, code) = | ||
1317 : | let fun mark(tbl, []) = () | ||
1318 : | | mark(tbl, r::rs) = | ||
1319 : | george | 889 | (A.update(tbl, CB.registerNum r, stamp); mark(tbl, rs)) |
1320 : | leunga | 731 | in mark(lastUseTbl,lastUse); (* mark all last uses *) |
1321 : | trans(stamp, instr, [], rest, dead, lastUses, code) | ||
1322 : | end | ||
1323 : | | loop _ = error "loop" | ||
1324 : | |||
1325 : | (* | ||
1326 : | * Main routine that does the actual translation. | ||
1327 : | * A few reminders: | ||
1328 : | * o The instructions are processed in normal order | ||
1329 : | * and generated in the reversed order. | ||
1330 : | * o (Local) liveness is computed at the same time. | ||
1331 : | * o For each use, we have to find out whether it is | ||
1332 : | * the last use. If so, we can kill it and reclaim | ||
1333 : | * the stack entry at the same time. | ||
1334 : | *) | ||
1335 : | and trans(stamp, instr, an, rest, dead, lastUses, code) = | ||
1336 : | let (* Call this continuation when done with code generation *) | ||
1337 : | fun FINISH code = loop(stamp+1, rest, lastUses, code) | ||
1338 : | |||
1339 : | leunga | 1025 | fun KILL_THE_DEAD(dead, code) = |
1340 : | leunga | 731 | let fun kill([], code) = FINISH code |
1341 : | | kill(f::fs, code) = | ||
1342 : | george | 889 | let val fx = CB.registerNum f |
1343 : | leunga | 744 | in if debug andalso debugDead then |
1344 : | pr("DEAD "^fregToString f^" in "^ | ||
1345 : | ST.stackToString stack^"\n") | ||
1346 : | else (); | ||
1347 : | (* not a physical register *) | ||
1348 : | if fx >= 8 then kill(fs, code) | ||
1349 : | else | ||
1350 : | let val i = ST.fp(stack, fx) | ||
1351 : | in if debug andalso debugDead then | ||
1352 : | pr("KILLING "^fregToString f^ | ||
1353 : | "=%st("^i2s i^")\n") | ||
1354 : | else (); | ||
1355 : | if i < 0 then kill(fs, code) (* dead already *) | ||
1356 : | else if i = 0 then | ||
1357 : | (ST.pop stack; kill(fs, POP_ST::code)) | ||
1358 : | else | ||
1359 : | (ST.xch(stack,0,i); ST.pop stack; | ||
1360 : | george | 1003 | kill(fs, I.fstpl(ST i)::code) |
1361 : | leunga | 744 | ) |
1362 : | end | ||
1363 : | end | ||
1364 : | leunga | 731 | in kill(dead, code) |
1365 : | end | ||
1366 : | |||
1367 : | leunga | 1025 | (* Call this continuation when done with floating point |
1368 : | * code generation. Remove all dead code first. | ||
1369 : | *) | ||
1370 : | fun DONE code = KILL_THE_DEAD(dead, code) | ||
1371 : | |||
1372 : | leunga | 731 | (* Is this the last use of register f? *) |
1373 : | fun isLastUse f = A.sub(lastUseTbl, f) = stamp | ||
1374 : | |||
1375 : | (* Is this value dead? *) | ||
1376 : | fun isDead f = | ||
1377 : | let fun loop [] = false | ||
1378 : | george | 889 | | loop(r::rs) = CB.sameColor(f,r) orelse loop rs |
1379 : | leunga | 731 | in loop dead end |
1380 : | |||
1381 : | (* Dump the stack before each intruction for debugging *) | ||
1382 : | fun log() = if debug andalso !traceOn then | ||
1383 : | pr(ST.stackToString stack^assemble instr^"...\n") | ||
1384 : | else () | ||
1385 : | |||
1386 : | (* Find the location of a source register *) | ||
1387 : | fun getfs(f) = | ||
1388 : | george | 889 | let val fx = CB.registerNum f |
1389 : | leunga | 744 | val s = ST.fp(stack, fx) |
1390 : | in (isLastUse fx,s) end | ||
1391 : | leunga | 731 | |
1392 : | (* Generate memory to memory move *) | ||
1393 : | fun mmmove(fsize,src,dst) = | ||
1394 : | let val _ = ST.nonFull stack | ||
1395 : | val code = FLD(fsize,src)::code | ||
1396 : | val code = mark(FSTP(fsize,dst),an)::code | ||
1397 : | in DONE code end | ||
1398 : | |||
1399 : | (* Allocate a new register in %st(0) *) | ||
1400 : | george | 889 | fun alloc(f,code) = (ST.push(stack,CB.registerNum f); code) |
1401 : | leunga | 731 | |
1402 : | (* register -> register move *) | ||
1403 : | fun rrmove(fs,fd) = | ||
1404 : | george | 889 | if CB.sameColor(fs,fd) then DONE code |
1405 : | leunga | 731 | else |
1406 : | leunga | 744 | let val (dead,ss) = getfs fs |
1407 : | leunga | 731 | in if dead then (* fs is dead *) |
1408 : | george | 889 | (ST.set(stack,ss,CB.registerNum fd); (* rename fd to fs *) |
1409 : | leunga | 731 | DONE code (* no code is generated *) |
1410 : | ) | ||
1411 : | else (* fs is not dead; push it onto %st(0); | ||
1412 : | * set fd to %st(0) | ||
1413 : | *) | ||
1414 : | let val code = alloc(fd, code) | ||
1415 : | george | 1003 | in DONE(mark(I.fldl(ST ss),an)::code) |
1416 : | leunga | 731 | end |
1417 : | end | ||
1418 : | |||
1419 : | (* memory -> register move. | ||
1420 : | * Do dead code elimination here. | ||
1421 : | *) | ||
1422 : | fun mrmove(fsize,src,fd) = | ||
1423 : | leunga | 744 | if isDead fd |
1424 : | leunga | 731 | then FINISH code (* value has been killed *) |
1425 : | else | ||
1426 : | let val code = alloc(fd, code) | ||
1427 : | in DONE(mark(FLD(fsize,src),an)::code) | ||
1428 : | end | ||
1429 : | |||
1430 : | (* exchange %st(n) and %st(0) *) | ||
1431 : | fun xch(n) = (ST.xch(stack,0,n); FXCH n) | ||
1432 : | |||
1433 : | (* push %st(n) onto the stack *) | ||
1434 : | george | 1003 | fun push(n) = (ST.push(stack,~2); I.fldl(ST n)) |
1435 : | leunga | 731 | |
1436 : | |||
1437 : | (* push mem onto the stack *) | ||
1438 : | george | 1003 | fun pushmem(src) = (ST.push(stack,~2); I.fldl(src)) |
1439 : | leunga | 731 | |
1440 : | (* register -> memory move. | ||
1441 : | * Use pop version of the opcode if it is the last use. | ||
1442 : | *) | ||
1443 : | fun rmmove(fsize,fs,dst) = | ||
1444 : | let fun fstp(code) = | ||
1445 : | (ST.pop stack; DONE(mark(FSTP(fsize,dst),an)::code)) | ||
1446 : | fun fst(code) = DONE(mark(FST(fsize,dst),an)::code) | ||
1447 : | in case getfs fs of | ||
1448 : | (true, 0) => fstp code | ||
1449 : | | (true, n) => fstp(xch n::code) | ||
1450 : | | (false, 0) => fst(code) | ||
1451 : | | (false, n) => fst(xch n::code) | ||
1452 : | end | ||
1453 : | |||
1454 : | (* Floating point move *) | ||
1455 : | fun fmove{fsize,src=I.FPR fs,dst=I.FPR fd} = rrmove(fs,fd) | ||
1456 : | | fmove{fsize,src,dst=I.FPR fd} = mrmove(fsize,src,fd) | ||
1457 : | | fmove{fsize,src=I.FPR fs,dst} = rmmove(fsize,fs,dst) | ||
1458 : | | fmove{fsize,src,dst} = mmmove(fsize,src,dst) | ||
1459 : | |||
1460 : | (* Floating point integer load operator *) | ||
1461 : | fun fiload{isize,ea,dst=I.FPR fd} = | ||
1462 : | leunga | 744 | let val code = alloc(fd, code) |
1463 : | leunga | 731 | val code = mark(FILD(isize,ea),an)::code |
1464 : | in DONE code | ||
1465 : | end | ||
1466 : | | fiload{isize,ea,dst} = | ||
1467 : | let val code = mark(FILD(isize,ea),an)::code | ||
1468 : | george | 1003 | val code = I.fstpl(dst)::code (* XXX *) |
1469 : | leunga | 731 | in DONE code |
1470 : | end | ||
1471 : | |||
1472 : | (* Make a copy of register fs to %st(0). *) | ||
1473 : | fun moveregtotop(fs, code) = | ||
1474 : | (case getfs fs of | ||
1475 : | (true, 0) => code | ||
1476 : | | (true, n) => xch n::code | ||
1477 : | | (false, n) => push n::code | ||
1478 : | ) | ||
1479 : | |||
1480 : | fun movememtotop(fsize, mem, code) = | ||
1481 : | (ST.push(stack, ~2); FLD(fsize, mem)::code) | ||
1482 : | |||
1483 : | (* Move an operand to top of stack *) | ||
1484 : | fun movetotop(fsize, I.FPR fs, code) = moveregtotop(fs, code) | ||
1485 : | | movetotop(fsize, mem, code) = movememtotop(fsize, mem, code) | ||
1486 : | |||
1487 : | fun storeResult(fsize, dst, n, code) = | ||
1488 : | case dst of | ||
1489 : | george | 889 | I.FPR fd => (ST.set(stack, n, CB.registerNum fd); DONE code) |
1490 : | leunga | 731 | | mem => |
1491 : | let val code = if n = 0 then code else xch n::code | ||
1492 : | in ST.pop stack; DONE(FSTP(fsize, mem)::code) end | ||
1493 : | |||
1494 : | (* Floating point unary operator *) | ||
1495 : | fun funop{fsize,unOp,src,dst} = | ||
1496 : | let val code = movetotop(fsize, src, code) | ||
1497 : | george | 1003 | val code = mark(I.funary unOp,an)::code |
1498 : | leunga | 731 | |
1499 : | (* Moronic hack to deal with partial tangent! *) | ||
1500 : | val code = | ||
1501 : | case unOp of | ||
1502 : | I.FPTAN => | ||
1503 : | (if ST.depth stack >= 7 then error "FPTAN" | ||
1504 : | else (); | ||
1505 : | POP_ST::code (* pop the useless 1.0 *) | ||
1506 : | ) | ||
1507 : | | _ => code | ||
1508 : | in storeResult(fsize, dst, 0, code) | ||
1509 : | end | ||
1510 : | |||
1511 : | (* Floating point binary operator. | ||
1512 : | * Note: | ||
1513 : | * binop src, dst | ||
1514 : | * means dst := dst binop src | ||
1515 : | * (lsrc := lsrc binop rsrc) | ||
1516 : | * on the x86 | ||
1517 : | *) | ||
1518 : | fun fbinop{fsize,binOp,lsrc,rsrc,dst} = | ||
1519 : | let (* generate code and set %st(n) = fd *) | ||
1520 : | (* op2 := op1 - op2 *) | ||
1521 : | fun oper(binOp,op1,op2,n,code) = | ||
1522 : | let val code = | ||
1523 : | george | 1003 | mark(I.fbinary{binOp=binOp,src=op1,dst=op2},an) |
1524 : | leunga | 731 | ::code |
1525 : | in storeResult(I.FP64, dst, n, code) | ||
1526 : | end | ||
1527 : | |||
1528 : | fun operR(binOp,op1,op2,n,code) = | ||
1529 : | oper(invert binOp,op1,op2,n,code) | ||
1530 : | |||
1531 : | fun operP(binOp,op1,op2,n,code) = | ||
1532 : | (ST.pop stack; oper(pop binOp,op1,op2,n-1,code)) | ||
1533 : | |||
1534 : | fun operRP(binOp,op1,op2,n,code) = | ||
1535 : | (ST.pop stack; operR(pop binOp,op1,op2,n-1,code)) | ||
1536 : | |||
1537 : | (* Many special cases to consider. | ||
1538 : | * Basically, try to reuse stack space as | ||
1539 : | * much as possible by taking advantage of last uses. | ||
1540 : | * | ||
1541 : | * Stack=[st(0)=3.0 st(1)=2.0] | ||
1542 : | * fsub %st(1), %st [1,2.0] | ||
1543 : | * fsubr %st(1), %st [-1,2.0] | ||
1544 : | * fsub %st, %st(1) [3.0,1.0] | ||
1545 : | * fsubr %st, %st(1) [3.0,-1.0] | ||
1546 : | * | ||
1547 : | * fsubp %st, %st(1) [1] | ||
1548 : | * fsubrp %st, %st(1) [-1] | ||
1549 : | * So, | ||
1550 : | * fsub %st(n), %st (means %st - %st(n) -> %st) | ||
1551 : | * fsub %st, %st(n) (means %st - %st(n) -> %st(n)) | ||
1552 : | * fsubr %st(n), %st (means %st(n) - %st -> %st) | ||
1553 : | * fsubr %st, %st(n) (means %st(n) - %st -> %st(n)) | ||
1554 : | *) | ||
1555 : | fun reg2(fx, fy) = | ||
1556 : | let val (dx, sx) = getfs fx | ||
1557 : | val (dy, sy) = getfs fy | ||
1558 : | fun loop(dx, sx, dy, sy, code) = | ||
1559 : | (* op1, op2 (dst) *) | ||
1560 : | case (dx, sx, dy, sy) of | ||
1561 : | (true, 0, false, n) => oper(binOp,ST n,ST0,0,code) | ||
1562 : | | (false, n, true, 0) => operR(binOp,ST n,ST0,0,code) | ||
1563 : | | (true, n, true, 0) => operRP(binOp,ST0,ST n,n,code) | ||
1564 : | | (true, 0, true, n) => operP(binOp,ST0,ST n,n,code) | ||
1565 : | | (false, 0, true, n) => oper(binOp,ST0,ST n,n,code) | ||
1566 : | | (true, n, false, 0) => operR(binOp,ST0,ST n,n,code) | ||
1567 : | | (true, sx, dy, sy) => | ||
1568 : | loop(true, 0, dy, sy, xch sx::code) | ||
1569 : | | (dx, sx, true, sy) => | ||
1570 : | loop(dx, sx, true, 0, xch sy::code) | ||
1571 : | | (false, sx, false, sy) => | ||
1572 : | loop(true, 0, false, sy+1, push sx::code) | ||
1573 : | in if sx = sy then (* same register *) | ||
1574 : | let val code = | ||
1575 : | case (dx, sx) of | ||
1576 : | (true, 0) => code | ||
1577 : | | (true, n) => xch n::code | ||
1578 : | | (false, n) => push n::code | ||
1579 : | in oper(binOp,ST0,ST0,0,code) | ||
1580 : | end | ||
1581 : | else loop(dx, sx, dy, sy, code) | ||
1582 : | end | ||
1583 : | |||
1584 : | (* reg/mem operands *) | ||
1585 : | fun regmem(binOp, fx, mem) = | ||
1586 : | case getfs fx of | ||
1587 : | (true, 0) => oper(binOp,mem,ST0,0,code) | ||
1588 : | | (true, n) => oper(binOp,mem,ST0,0,xch n::code) | ||
1589 : | | (false, n) => oper(binOp,mem,ST0,0,push n::code) | ||
1590 : | |||
1591 : | (* Two memory operands. Optimize the case when | ||
1592 : | * the two operands are identical. | ||
1593 : | *) | ||
1594 : | fun mem2(lsrc, rsrc) = | ||
1595 : | let val _ = ST.push(stack,~2) | ||
1596 : | val code = FLD(fsize,lsrc)::code | ||
1597 : | val rsrc = if P.eqOpn(lsrc, rsrc) then ST0 else rsrc | ||
1598 : | in oper(binOp,rsrc,ST0,0,code) | ||
1599 : | end | ||
1600 : | |||
1601 : | fun process(I.FPR fx, I.FPR fy) = reg2(fx, fy) | ||
1602 : | | process(I.FPR fx, mem) = regmem(binOp, fx, mem) | ||
1603 : | | process(mem, I.FPR fy) = regmem(invert binOp, fy, mem) | ||
1604 : | | process(lsrc, rsrc) = mem2(lsrc, rsrc) | ||
1605 : | |||
1606 : | in process(lsrc, rsrc) | ||
1607 : | end | ||
1608 : | |||
1609 : | (* Floating point binary operator with integer conversion *) | ||
1610 : | fun fibinop{isize,binOp,lsrc,rsrc,dst} = | ||
1611 : | let fun oper(binOp,src,code) = | ||
1612 : | george | 1003 | let val code = mark(I.fibinary{binOp=binOp,src=src},an) |
1613 : | leunga | 731 | ::code |
1614 : | in storeResult(I.FP64, dst, 0, code) | ||
1615 : | end | ||
1616 : | |||
1617 : | fun regmem(binOp, fx, mem) = | ||
1618 : | case getfs fx of | ||
1619 : | (true, 0) => oper(binOp, mem, code) | ||
1620 : | | (true, n) => oper(binOp, mem, xch n::code) | ||
1621 : | | (false, n) => oper(binOp, mem, push n::code) | ||
1622 : | |||
1623 : | in case (lsrc, rsrc) of | ||
1624 : | (I.FPR fx, mem) => regmem(binOp, fx, mem) | ||
1625 : | | (lsrc, rsrc) => oper(binOp, rsrc, pushmem lsrc::code) | ||
1626 : | end | ||
1627 : | |||
1628 : | (* Floating point comparison | ||
1629 : | * We have to make sure there are enough registers. | ||
1630 : | * The trick is that tmp is always a physical register. | ||
1631 : | * So we can always use it as temporary space if we | ||
1632 : | * have run out. | ||
1633 : | *) | ||
1634 : | fun fcmp{fsize,lsrc,rsrc} = | ||
1635 : | let fun fucompp() = | ||
1636 : | george | 1003 | (ST.pop stack; ST.pop stack; mark(I.fucompp,an)) |
1637 : | leunga | 731 | fun fucomp(n) = |
1638 : | george | 1003 | (ST.pop stack; mark(I.fucomp(ST n),an)) |
1639 : | fun fucom(n) = mark(I.fucom(ST n),an) | ||
1640 : | leunga | 731 | |
1641 : | fun genmemcmp() = | ||
1642 : | let val code = movememtotop(fsize, rsrc, code) | ||
1643 : | val code = movememtotop(fsize, lsrc, code) | ||
1644 : | in FINISH(fucompp()::code) | ||
1645 : | end | ||
1646 : | |||
1647 : | fun genmemregcmp(lsrc, fy) = | ||
1648 : | case getfs fy of | ||
1649 : | (false, n) => | ||
1650 : | let val code = movememtotop(fsize, lsrc, code) | ||
1651 : | in FINISH(fucomp(n+1)::code) end | ||
1652 : | | (true, n) => | ||
1653 : | let val code = if n = 0 then code else xch n::code | ||
1654 : | val code = movememtotop(fsize, lsrc, code) | ||
1655 : | in FINISH(fucompp()::code) | ||
1656 : | end | ||
1657 : | |||
1658 : | fun genregmemcmp(fx, rsrc) = | ||
1659 : | let val code = | ||
1660 : | case getfs fx of | ||
1661 : | (true, n) => | ||
1662 : | let val code = if n = 0 then code | ||
1663 : | else xch n::code | ||
1664 : | val code = movememtotop(fsize, rsrc, code) | ||
1665 : | in xch 1::code end | ||
1666 : | | (false, n) => | ||
1667 : | let val code = movememtotop(fsize, rsrc, code) | ||
1668 : | in push(n+1)::code | ||
1669 : | end | ||
1670 : | in FINISH(fucompp()::code) | ||
1671 : | end | ||
1672 : | |||
1673 : | (* Deal with the special case when both sources are | ||
1674 : | * in the same register | ||
1675 : | *) | ||
1676 : | fun regsame(dx, sx) = | ||
1677 : | let val (code, cmp) = | ||
1678 : | case (dx, sx) of | ||
1679 : | (true, 0) => (code, fucomp 0) (* pop once! *) | ||
1680 : | | (false, 0) => (code, fucom 0) (* don't pop! *) | ||
1681 : | | (true, n) => (xch n::code, fucomp 0) | ||
1682 : | | (false, n) => (xch n::code, fucom 0) | ||
1683 : | in FINISH(cmp::code) end | ||
1684 : | |||
1685 : | fun reg2(fx, fy) = | ||
1686 : | (* special case is when things are already in place. | ||
1687 : | * Note: should also generate FUCOM and FUCOMP!!! | ||
1688 : | *) | ||
1689 : | let val (dx, sx) = getfs fx | ||
1690 : | val (dy, sy) = getfs fy | ||
1691 : | fun fstp(n) = | ||
1692 : | george | 1003 | (ST.xch(stack,n,0); ST.pop stack; I.fstpl(ST n)) |
1693 : | leunga | 731 | in if sx = sy then regsame(dx, sx) (* same register!*) |
1694 : | else | ||
1695 : | (* first, move sx to %st(0) *) | ||
1696 : | let val (sy, code) = | ||
1697 : | if sx = 0 then (sy, code) (* there already *) | ||
1698 : | else (if sy = 0 then sx else sy, | ||
1699 : | xch sx::code) | ||
1700 : | |||
1701 : | (* Generate the appropriate comparison op *) | ||
1702 : | val (sy, cmp, popY) = | ||
1703 : | case (dx, dy, sy) of | ||
1704 : | (true, true, 0) => (~1, fucompp(), false) | ||
1705 : | | (true, _, _) => (sy-1, fucomp sy, dy) | ||
1706 : | | (false, _, _) => (sy, fucom sy, dy) | ||
1707 : | |||
1708 : | val code = cmp::code | ||
1709 : | |||
1710 : | (* Pop fy if it is dead and hasn't already | ||
1711 : | * been popped. | ||
1712 : | *) | ||
1713 : | val code = if popY then fstp sy::code else code | ||
1714 : | in FINISH code | ||
1715 : | end | ||
1716 : | end | ||
1717 : | |||
1718 : | in case (lsrc, rsrc) of | ||
1719 : | (I.FPR x, I.FPR y) => reg2(x, y) | ||
1720 : | | (I.FPR x, mem) => genregmemcmp(x, mem) | ||
1721 : | | (mem, I.FPR y) => genmemregcmp(mem, y) | ||
1722 : | | _ => genmemcmp() | ||
1723 : | end | ||
1724 : | |||
1725 : | |||
1726 : | fun prCopy(dst, src) = | ||
1727 : | ListPair.app(fn (fd, fs) => | ||
1728 : | leunga | 744 | pr(fregToString(fd)^"<-"^fregToString fs^" ")) |
1729 : | leunga | 731 | (dst, src) |
1730 : | |||
1731 : | (* Parallel copy magic. | ||
1732 : | * For each src registers, we find out | ||
1733 : | * 1. whether it is the last use, and if so, | ||
1734 : | * 2. whether it is used more than once. | ||
1735 : | * If a source is a last and unique use, then we | ||
1736 : | * can simply rename it to appropriate destination register. | ||
1737 : | *) | ||
1738 : | george | 1009 | fun fcopy(I.COPY{dst,src,tmp,...}) = |
1739 : | leunga | 731 | let fun loop([], [], copies, renames) = (copies, renames) |
1740 : | | loop(fd::fds, fs::fss, copies, renames) = | ||
1741 : | george | 889 | let val fsx = CB.registerNum fs |
1742 : | leunga | 744 | in if isLastUse fsx then |
1743 : | if A.sub(useTbl,fsx) <> stamp | ||
1744 : | (* unused *) | ||
1745 : | then (A.update(useTbl,fsx,stamp); | ||
1746 : | leunga | 731 | loop(fds, fss, copies, |
1747 : | george | 889 | if CB.sameColor(fd,fs) then renames |
1748 : | leunga | 731 | else (fd, fs)::renames) |
1749 : | leunga | 744 | ) |
1750 : | leunga | 731 | else loop(fds, fss, (fd, fs)::copies, renames) |
1751 : | else loop(fds, fss, (fd, fs)::copies, renames) | ||
1752 : | end | ||
1753 : | | loop _ = error "fcopy.loop" | ||
1754 : | |||
1755 : | (* generate code for the copies *) | ||
1756 : | fun genCopy([], code) = code | ||
1757 : | | genCopy((fd, fs)::copies, code) = | ||
1758 : | george | 889 | let val ss = ST.fp(stack, CB.registerNum fs) |
1759 : | val _ = ST.push(stack, CB.registerNum fd) | ||
1760 : | george | 1003 | val code = I.fldl(ST ss)::code |
1761 : | leunga | 731 | in genCopy(copies, code) end |
1762 : | |||
1763 : | (* perform the renaming; it must be done in parallel! *) | ||
1764 : | fun renaming(renames) = | ||
1765 : | leunga | 744 | let val ss = map (fn (_,fs) => |
1766 : | george | 889 | ST.fp(stack,CB.registerNum fs)) renames |
1767 : | leunga | 744 | in ListPair.app (fn ((fd,_),ss) => |
1768 : | george | 889 | ST.set(stack,ss,CB.registerNum fd)) |
1769 : | leunga | 731 | (renames, ss) |
1770 : | end | ||
1771 : | |||
1772 : | (* val _ = if debug then | ||
1773 : | (ListPair.app (fn (fd, fs) => | ||
1774 : | pr(fregToString(regmap fd)^"<-"^ | ||
1775 : | fregToString(regmap fs)^" ") | ||
1776 : | ) (dst, src); | ||
1777 : | pr "\n") | ||
1778 : | else () *) | ||
1779 : | |||
1780 : | val (copies, renames) = loop(dst, src, [], []) | ||
1781 : | val code = genCopy(copies, code) | ||
1782 : | in renaming renames; | ||
1783 : | case tmp of | ||
1784 : | SOME(I.FPR f) => | ||
1785 : | leunga | 744 | (if debug andalso debugDead |
1786 : | then pr("KILLING tmp "^fregToString f^"\n") | ||
1787 : | else (); | ||
1788 : | ST.kill(stack, f) | ||
1789 : | ) | ||
1790 : | leunga | 731 | | _ => (); |
1791 : | DONE code | ||
1792 : | end | ||
1793 : | |||
1794 : | george | 895 | fun call(instr, return) = let |
1795 : | george | 1003 | val code = mark(I.INSTR instr, an)::code |
1796 : | george | 895 | val returnSet = SL.return(SL.uniq(getCell return)) |
1797 : | in | ||
1798 : | case returnSet of | ||
1799 : | leunga | 815 | [] => () |
1800 : | leunga | 1025 | | [r] => ST.push(stack, CB.registerNum r) |
1801 : | leunga | 815 | | _ => |
1802 : | error "can't return more than one fp argument (yet)"; | ||
1803 : | leunga | 1025 | KILL_THE_DEAD(List.filter isDead returnSet, code) |
1804 : | leunga | 815 | end |
1805 : | george | 1003 | fun x86trans instr = |
1806 : | (case instr | ||
1807 : | of I.FMOVE x => (log(); fmove x) | ||
1808 : | | I.FBINOP x => (log(); fbinop x) | ||
1809 : | | I.FIBINOP x => (log(); fibinop x) | ||
1810 : | | I.FUNOP x => (log(); funop x) | ||
1811 : | | I.FILOAD x => (log(); fiload x) | ||
1812 : | | I.FCMP x => (log(); fcmp x) | ||
1813 : | leunga | 815 | |
1814 : | george | 1003 | (* handle calling convention *) |
1815 : | | I.CALL{return, ...} => (log(); call(instr,return)) | ||
1816 : | leunga | 731 | |
1817 : | george | 1003 | (* |
1818 : | * Catch instructions that absolutely | ||
1819 : | * should not have been generated at this point. | ||
1820 : | *) | ||
1821 : | | (I.FLD1 | I.FLDL2E | I.FLDLG2 | I.FLDLN2 | I.FLDPI | | ||
1822 : | I.FLDZ | I.FLDL _ | I.FLDS _ | I.FLDT _ | | ||
1823 : | I.FILD _ | I.FILDL _ | I.FILDLL _ | | ||
1824 : | I.FENV _ | I.FBINARY _ | I.FIBINARY _ | I.FUNARY _ | | ||
1825 : | I.FUCOMPP | I.FUCOM _ | I.FUCOMP _ | I.FCOMPP | I.FXCH _ | | ||
1826 : | I.FSTPL _ | I.FSTPS _ | I.FSTPT _ | I.FSTL _ | I.FSTS _ | ||
1827 : | ) => bug("Illegal FP instructions") | ||
1828 : | leunga | 731 | |
1829 : | george | 1003 | (* Other instructions are untouched *) |
1830 : | | instr => FINISH(mark(I.INSTR instr, an)::code) | ||
1831 : | (*esac*)) | ||
1832 : | in | ||
1833 : | case instr | ||
1834 : | of I.ANNOTATION{a,i} => | ||
1835 : | trans(stamp, i, a::an, rest, dead, lastUses, code) | ||
1836 : | george | 1009 | | I.COPY{k=CB.FP, ...} => (log(); fcopy instr) |
1837 : | george | 1033 | | I.LIVE _ => DONE(mark(instr, an)::code) |
1838 : | george | 1003 | | I.INSTR instr => x86trans(instr) |
1839 : | george | 1009 | | _ => FINISH(mark(instr, an)::code) |
1840 : | leunga | 731 | end (* trans *) |
1841 : | |||
1842 : | (* | ||
1843 : | * Check the translation result to see if it matches the original | ||
1844 : | * code. | ||
1845 : | *) | ||
1846 : | fun checkTranslation(stackIn, stackOut, insns) = | ||
1847 : | let val n = ref(ST.depth stackIn) | ||
1848 : | fun push() = n := !n + 1 | ||
1849 : | fun pop() = n := !n - 1 | ||
1850 : | george | 1003 | fun scan(I.INSTR(I.FBINARY{binOp, ...})) = |
1851 : | leunga | 731 | (case binOp of |
1852 : | ( I.FADDP | I.FSUBP | I.FSUBRP | I.FMULP | ||
1853 : | | I.FDIVP | I.FDIVRP) => pop() | ||
1854 : | | _ => () | ||
1855 : | ) | ||
1856 : | george | 1003 | | scan(I.INSTR(I.FIBINARY{binOp, ...})) = () |
1857 : | | scan(I.INSTR(I.FUNARY I.FPTAN)) = push() | ||
1858 : | | scan(I.INSTR(I.FUNARY _)) = () | ||
1859 : | | scan(I.INSTR(I.FLDL(I.ST n))) = push() | ||
1860 : | | scan(I.INSTR(I.FLDL mem)) = push() | ||
1861 : | | scan(I.INSTR(I.FLDS mem)) = push() | ||
1862 : | | scan(I.INSTR(I.FLDT mem)) = push() | ||
1863 : | | scan(I.INSTR(I.FSTL(I.ST n))) = () | ||
1864 : | | scan(I.INSTR(I.FSTPL(I.ST n))) = pop() | ||
1865 : | | scan(I.INSTR(I.FSTL mem)) = () | ||
1866 : | | scan(I.INSTR(I.FSTS mem)) = () | ||
1867 : | | scan(I.INSTR(I.FSTPL mem)) = pop() | ||
1868 : | | scan(I.INSTR(I.FSTPS mem)) = pop() | ||
1869 : | | scan(I.INSTR(I.FSTPT mem)) = pop() | ||
1870 : | | scan(I.INSTR(I.FXCH{opnd=i,...})) = () | ||
1871 : | | scan(I.INSTR(I.FUCOM _)) = () | ||
1872 : | | scan(I.INSTR(I.FUCOMP _)) = pop() | ||
1873 : | | scan(I.INSTR(I.FUCOMPP)) = (pop(); pop()) | ||
1874 : | | scan(I.INSTR(I.FILD mem)) = push() | ||
1875 : | | scan(I.INSTR(I.FILDL mem)) = push() | ||
1876 : | | scan(I.INSTR(I.FILDLL mem)) = push() | ||
1877 : | leunga | 1025 | | scan(I.INSTR(I.CALL{return, ...})) = |
1878 : | (n := 0; (* clear the stack *) | ||
1879 : | (* Simulate the pushing of arguments *) | ||
1880 : | let val returnSet = SL.return(SL.uniq(getCell return)) | ||
1881 : | in app (fn _ => push()) returnSet | ||
1882 : | end | ||
1883 : | ) | ||
1884 : | leunga | 731 | | scan _ = () |
1885 : | val _ = app scan (rev insns); | ||
1886 : | val n = !n | ||
1887 : | val m = ST.depth stackOut | ||
1888 : | george | 1003 | in |
1889 : | if n <> m then | ||
1890 : | leunga | 731 | (dump(insns); |
1891 : | bug("Bad translation n="^i2s n^ " expected="^i2s m^"\n") | ||
1892 : | ) | ||
1893 : | else () | ||
1894 : | end | ||
1895 : | |||
1896 : | |||
1897 : | (* Dump the initial code *) | ||
1898 : | val _ = if debug andalso !debugOn then | ||
1899 : | (pr("-------- block "^i2s blknum^" ----"^ | ||
1900 : | jhr | 925 | celllistToString liveIn^" "^ |
1901 : | leunga | 731 | ST.stackToString stackIn^"\n"); |
1902 : | jhr | 925 | dump (!insns); |
1903 : | pr("succ="); | ||
1904 : | app (fn b => pr(i2s b^" ")) (#succ cfg blknum); | ||
1905 : | pr("\n") | ||
1906 : | leunga | 731 | ) |
1907 : | else () | ||
1908 : | |||
1909 : | (* Compute the last uses *) | ||
1910 : | val lastUse = computeLastUse(blknum, insns, liveOut) | ||
1911 : | |||
1912 : | (* Rewrite the code *) | ||
1913 : | val (stamp, insns') = loop(stamp, rev(!insns), lastUse, code) | ||
1914 : | |||
1915 : | (* Insert shuffle code at the end if necessary *) | ||
1916 : | jhr | 925 | val insns' = shuffleOut(stack, insns', blknum, block, liveOut) |
1917 : | leunga | 731 | |
1918 : | (* Dump translation *) | ||
1919 : | val _ = if debug andalso !debugOn then | ||
1920 : | (pr("-------- translation "^i2s blknum^"----"^ | ||
1921 : | jhr | 925 | celllistToString liveIn^" "^ |
1922 : | leunga | 731 | ST.stackToString stackIn^"\n"); |
1923 : | dump insns'; | ||
1924 : | pr("-------- done "^i2s blknum^"----"^ | ||
1925 : | jhr | 925 | celllistToString liveOut^" "^ |
1926 : | leunga | 731 | ST.stackToString stack^"\n") |
1927 : | ) | ||
1928 : | else () | ||
1929 : | |||
1930 : | (* Check if things are okay *) | ||
1931 : | val _ = if debug andalso sanityCheck then | ||
1932 : | checkTranslation(stackIn, stack, insns') | ||
1933 : | else () | ||
1934 : | |||
1935 : | in insns := insns'; (* update the instructions *) | ||
1936 : | stamp | ||
1937 : | end (* process *) | ||
1938 : | |||
1939 : | in (* Translate all blocks *) | ||
1940 : | jhr | 925 | stamp := C.firstPseudo; |
1941 : | #forall_nodes cfg rewriteAllBlocks; | ||
1942 : | leunga | 731 | (* If we found critical edges, then we have to split them... *) |
1943 : | jhr | 925 | if IntHashTable.numItems edgesToSplit = 0 then Cfg |
1944 : | else repairCriticalEdges(Cfg) | ||
1945 : | leunga | 744 | end |
1946 : | leunga | 731 | end (* functor *) |
1947 : | |||
1948 : | end (* local *) |
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |