SCM Repository
View of /sml/trunk/src/MLRISC/x86/mltree/x86-fp.sml
Parent Directory
|
Revision Log
Revision 1052 -
(download)
(annotate)
Wed Feb 6 04:04:48 2002 UTC (20 years, 4 months ago) by george
File size: 82902 byte(s)
Wed Feb 6 04:04:48 2002 UTC (20 years, 4 months ago) by george
File size: 82902 byte(s)
A bug fix from Allen. A typo causes extra fstp %st(0)'s to be generated at compensation edges, which might cause stack underflow traps at runtime. This occurs in fft where there are extraneous fstps right before the 'into' trap instruction (in this case they are harmless since none of the integers overflow.)
(* x86-fp.sml * * COPYRIGHT (c) 2001 Bell Labs, Lucent Technologies * * This phase takes a cluster with pseudo x86 fp instructions, performs * liveness analysis to determine their live ranges, and rewrite the * program into the correct stack based code. * * The Basics * ---------- * o We assume there are 7 pseudo fp registers, %fp(0), ..., %fp(6), * which are mapped onto the %st stack. One stack location is reserved * for holding temporaries. * o Important: for floating point comparisons, we actually need * two extra stack locations in the worst case. We handle this by * specifying that the instruction define an extra temporary fp register * when necessary. * o The mapping between %fp <-> %st may change from program point to * program point. We keep track of this lazy renaming and try to minimize * the number of FXCH that we insert. * o At split and merge points, we may get inconsistent %fp <-> %st mappings. * We handle this by inserting the appropriate renaming code. * o Parallel copies (renaming) are rewritten into a sequence of FXCHs! * * Pseudo fp instructions Semantics * -------------------------------------- * FMOVE src, dst dst := src * FILOAD ea, dst dst := cvti2f(mem[ea]) * FBINOP lsrc, rsrc, dst dst := lsrc * rsrc * FIBINOP lsrc, rsrc, dst dst := lsrc * cvti2f(rsrc) * FUNOP src, dst dst := unaryOp src * FCMP lsrc, rsrc fp condition code := fcmp(lsrc, rsrc) * * An instruction may use its source operand(s) destructively. * We find this info using a global liveness analysis. * * The Translation * --------------- * o We keep track of the bindings between %fp registers and the * %st(..) staack locations. * o FXCH and FLDL are inserted at the appropriate places to move operands * to %st(0). FLDL is used if the operand is not dead. FXCH is used * if the operand is the last use. * o FCOPY's between pseudo %fp registers are done by software renaming * and generate no code by itself! * o FSTL %st(1) are also generated to pop the stack after the last use * of an operand. * * Note * ---- * 1. This module should be run after floating point register allocation. * 2. Due to the extra complication of critical edge splitting, the cellset * and frequency info are not preserved. * * -- Allen Leung (leunga@cs.nyu.edu) *) local val debug = false (* set this to true to debug this module * set this to false for production use. *) val debugLiveness = true (* debug liveness analysis *) val debugDead = false (* debug dead code removal *) val sanityCheck = true in functor X86FP (structure X86Instr : X86INSTR structure X86Props : INSN_PROPERTIES where I = X86Instr structure Flowgraph : CONTROL_FLOW_GRAPH where I = X86Instr structure Liveness : LIVENESS where CFG = Flowgraph structure Asm : INSTRUCTION_EMITTER where I = X86Instr and S.P = Flowgraph.P ) : CFG_OPTIMIZATION = struct structure CFG = Flowgraph structure G = Graph structure I = X86Instr structure T = I.T structure P = X86Props structure C = I.C structure A = Array structure L = Label structure An = Annotations structure CB = CellsBasis structure SL = CB.SortedCells structure HT = IntHashTable type flowgraph = CFG.cfg type an = An.annotations val name = "X86 floating point rewrite" val debugOn = MLRiscControl.getFlag "x86-fp-debug" val traceOn = MLRiscControl.getFlag "x86-fp-trace" fun error msg = MLRiscErrorMsg.error("X86FP",msg) fun pr msg = TextIO.output(!MLRiscControl.debug_stream,msg) val i2s = Int.toString (* * No overflow checking is needed for integer arithmetic in this module *) fun x + y = Word.toIntX(Word.+(Word.fromInt x, Word.fromInt y)) fun x - y = Word.toIntX(Word.-(Word.fromInt x, Word.fromInt y)) fun celllistToCellset l = List.foldr CB.CellSet.add CB.CellSet.empty l fun celllistToString l = CB.CellSet.toString(celllistToCellset l) (* Annotation to mark split edges *) exception TargetMovedTo of G.node_id (*----------------------------------------------------------------------- * Primitive instruction handling routines *-----------------------------------------------------------------------*) (* Annotation an instruction *) fun mark(instr, []) = instr | mark(instr, a::an) = mark(I.ANNOTATION{i=instr,a=a}, an) (* Add pop suffix to a binary operator *) fun pop I.FADDL = I.FADDP | pop I.FADDS = I.FADDP | pop I.FSUBL = I.FSUBP | pop I.FSUBS = I.FSUBP | pop I.FSUBRL = I.FSUBRP | pop I.FSUBRS = I.FSUBRP | pop I.FMULL = I.FMULP | pop I.FMULS = I.FMULP | pop I.FDIVL = I.FDIVP | pop I.FDIVS = I.FDIVP | pop I.FDIVRL = I.FDIVRP | pop I.FDIVRS = I.FDIVRP | pop _ = error "fbinop.pop" (* Invert the operator *) fun invert I.FADDL = I.FADDL | invert I.FADDS = I.FADDS | invert I.FSUBL = I.FSUBRL | invert I.FSUBS = I.FSUBRS | invert I.FSUBRL = I.FSUBL | invert I.FSUBRS = I.FSUBS | invert I.FMULL = I.FMULL | invert I.FMULS = I.FMULS | invert I.FDIVL = I.FDIVRL | invert I.FDIVS = I.FDIVRS | invert I.FDIVRL = I.FDIVL | invert I.FDIVRS = I.FDIVS | invert I.FADDP = I.FADDP | invert I.FMULP = I.FMULP | invert I.FSUBP = I.FSUBRP | invert I.FSUBRP = I.FSUBP | invert I.FDIVP = I.FDIVRP | invert I.FDIVRP = I.FDIVP | invert _ = error "invert" (* Pseudo instructions *) fun FLD(I.FP32, ea) = I.flds ea | FLD(I.FP64, ea) = I.fldl ea | FLD(I.FP80, ea) = I.fldt ea fun FILD(I.I8, ea) = error "FILD" | FILD(I.I16, ea) = I.fild ea | FILD(I.I32, ea) = I.fildl ea | FILD(I.I64, ea) = I.fildll ea fun FSTP(I.FP32, ea) = I.fstps ea | FSTP(I.FP64, ea) = I.fstpl ea | FSTP(I.FP80, ea) = I.fstpt ea fun FST(I.FP32, ea) = I.fsts ea | FST(I.FP64, ea) = I.fstl ea | FST(I.FP80, ea) = error "FSTT" (*----------------------------------------------------------------------- * Pretty print routines *-----------------------------------------------------------------------*) fun fregToString f = "%f"^i2s(CB.registerNum f) fun fregsToString s = List.foldr (fn (r,"") => fregToString r | (r,s) => fregToString r^" "^s) "" s fun blknumOf(CFG.BLOCK{id, ...}) = id (*----------------------------------------------------------------------- * A stack datatype that mimics the x86 floating point stack * and keeps track of bindings between %st(n) and %fp(n). *-----------------------------------------------------------------------*) structure ST :> sig type stack type stnum = int (* 0 -- 7 *) val create : unit -> stack val stack0 : stack val copy : stack -> stack val clear : stack -> unit val fp : stack * CB.register_id -> stnum val st : stack * stnum -> CB.register_id val set : stack * stnum * CB.register_id -> unit val push : stack * CB.register_id -> unit val xch : stack * stnum * stnum -> unit val pop : stack -> unit val depth : stack -> int val nonFull : stack -> unit val kill : stack * CellsBasis.cell -> unit val stackToString : stack -> string val equal : stack * stack -> bool end = struct type stnum = int datatype stack = STACK of { st : CB.register_id A.array, (* mapping %st -> %fp registers *) fp : stnum A.array, (* mapping %fp -> %st registers *) sp : int ref (* stack pointer *) } (* Create a new stack *) fun create() = STACK{st=A.array(8,~1), fp=A.array(7,16), sp=ref ~1} val stack0 = create() (* Copy a stack *) fun copy(STACK{st, fp, sp}) = let val st' = A.array(8, ~1) val fp' = A.array(7, 16) in A.copy{src=st,dst=st',si=0,di=0,len=NONE}; A.copy{src=fp,dst=fp',si=0,di=0,len=NONE}; STACK{st=st', fp=fp', sp=ref(!sp)} end (* Depth of stack *) fun depth(STACK{sp, ...}) = !sp + 1 fun nonFull(STACK{sp, ...}) = if !sp >= 7 then error "stack overflow" else () (* Given %st(n), lookup the corresponding %fp(n) *) fun st(STACK{st, sp, ...}, n) = A.sub(st, !sp - n) (* Given %fp(n), lookup the corresponding %st(n) *) fun fp(STACK{fp, sp, ...}, n) = !sp - A.sub(fp, n) fun stackToString stack = let val depth = depth stack fun f i = if i >= depth then " ]" else "%st("^i2s i^")=%f"^i2s(st(stack,i))^" "^f(i+1) in "[ "^f 0 end fun clear(STACK{st, fp, sp, ...}) = (sp := ~1; A.modify(fn _ => ~1) st; A.modify(fn _ => 16) fp) (* Set %st(n) := %f *) fun set(STACK{st, fp, sp, ...}, n, f) = (A.update(st, !sp - n, f); if f >= 0 then A.update(fp, f, !sp - n) else () ) (* Pop one entry *) fun pop(STACK{sp, st, fp, ...}) = sp := !sp - 1 (* Push %fp(f) onto %st(0) *) fun push(stack as STACK{sp, ...}, f) = (sp := !sp + 1; set(stack, 0, f)) (* Exchange the contents of %st(m) and %st(n) *) fun xch(stack, m, n) = let val f_m = st(stack, m) val f_n = st(stack, n) in set(stack, m, f_n); set(stack, n, f_m) end fun kill(STACK{fp, ...}, f) = A.update(fp, CB.registerNum f, 16) fun equal(st1, st2) = let val m = depth st1 val n = depth st2 fun loop i = i >= m orelse (st(st1, i) = st(st2, i) andalso loop(i+1)) in m = n andalso loop(0) end end (* struct *) (*----------------------------------------------------------------------- * Module to handle forward propagation. * Forward propagation does the following: * Given an instruction * fmove mem, %fp(n) * We delay the generation of the load until the first use of %fp(n), * which we can further optimize by folding the load into the operand * of the instruction, if it is the last use of this operand. * If %fp(n) is dead then no load is necessary. * Of course, we have to be careful whenever we encounter other * instruction with a write. *-----------------------------------------------------------------------*) (* structure ForwardPropagation :> sig type readbuffer val create : ST.stack -> readbuffer val load : readbuffer * C.cell * I.fsize * I.ea -> unit val getreg : readbuffer * bool * C.cell * I.instruction list -> I.operand * I.instruction list val flush : readbuffer * I.instruction list -> I.instruction list end = struct datatype readbuffer = READ of { stack : ST.stack, loads : (I.fsize * I.ea) option A.array, pending : int ref } fun create stack = READ{stack =stack, loads =A.array(8, NONE), pending =ref 0 } fun load(READ{pending, loads, ...}, fd, fsize, mem) = (A.update(loads, fd, SOME(fsize, mem)); pending := !pending + 1 ) (* Extract the operand for a register * If it has a delayed load associated with it then * we perform the load at this time. *) fun getreg(READ{pending, loads, stack, ...}, isLastUse, fs, code) = case A.sub(loads, fs) of NONE => let val n = ST.st(stack, fs) in if isLastUse then (ST n, code) else let val code = I.FLDL(ST n)::code in ST.push(stack, fs); (ST0, code) end end | SOME(fsize, mem) => let val code = FLD(fsize, mem)::code in A.update(loads, fs, NONE); (* delete load *) pending := !pending - 1; ST.push(stack, fs); (* fs is now in place *) (ST0, code) end (* Extract a binary operand. * We'll try to fold this into the operand *) fun getopnd(READ{pending, loads, stack,...}, isLastUse, I.FPR fs, code) = (case A.sub(loads, fs) of NONE => let val n = ST.st(stack, fs) in if isLastUse fs (* regmap XXX *) then (ST n, code) else let val code = I.FLDL(ST n)::code in ST.push(stack, fs); (ST0, code) end end | SOME(fsize, mem) => (A.update(loads, fs, NONE); (* delete load *) pending := !pending - 1; if isLastUse fs then (mem, code) else let val code = FLD(fsize, mem)::code in ST.push(stack, fs); (ST0, code) end ) ) | getopnd(_, _, ea, code) = (ea, code) fun flush(READ{pending=ref 0,...}, code) = code end (* struct *) *) (*----------------------------------------------------------------------- * Module to handle delayed stores. * Delayed store does the following: * Given an instruction * fstore %fp(n), %mem * We delay the generation of the store until necessary. * This gives us an opportunity to rearrange the order of the stores * to eliminate unnecessary fxch. *-----------------------------------------------------------------------*) (* structure DelayStore :> sig type writebuffer val create : ST.stack -> writebuffer val flush : writebuffer * I.instruction list -> I.instruction list end = struct datatype writebuffer = WRITE of { front : (I.ea * C.cell) list ref, back : (I.ea * C.cell) list ref, stack : ST.stack, pending : int ref } fun create stack = WRITE{front=ref [], back=ref [], stack=stack, pending=ref 0} fun flush(WRITE{pending=ref 0,...}, code) = code end (* struct *) *) (*----------------------------------------------------------------------- * Main routine. * * Algorithm: * 1. Perform liveness analysis. * 2. For each fp register, mark all its last use point(s). * Registers are popped at their last uses. * 3. Rewrite the instructions basic block by basic block. * 4. Insert shuffle code at basic block boundaries. * When necessary, split critical edges. * 5. Sacrifice a goat to make sure things don't go wrong. *-----------------------------------------------------------------------*) fun run(Cfg as G.GRAPH cfg) = let val numberOfBlks = #capacity cfg () val ENTRY = List.hd (#entries cfg ()) val EXIT = List.hd (#exits cfg ()) val getCell = C.getCellsByKind CB.FP (*extract the fp component of cellset*) val stTable = A.tabulate(8, fn n => I.ST(C.ST n)) fun ST n = (if sanityCheck andalso (n < 0 orelse n >= 8) then pr("WARNING BAD %st("^i2s n^")\n") else (); A.sub(stTable, n) ) fun FXCH n = I.fxch{opnd=C.ST n} val ST0 = ST 0 val ST1 = ST 1 val POP_ST = I.fstpl ST0 (* Instruction to pop an entry *) (* Dump instructions *) fun dump instrs = let val Asm.S.STREAM{emit, ...} = AsmStream.withStream (!MLRiscControl.debug_stream) Asm.makeStream [] in app emit (rev instrs) end (* Create assembly of instruction *) fun assemble instr = let val buf = StringOutStream.mkStreamBuf() val stream = StringOutStream.openStringOut buf val Asm.S.STREAM{emit, ...} = AsmStream.withStream stream Asm.makeStream [] val _ = emit instr val s = StringOutStream.getString buf val n = String.size s in if n = 0 then s else String.substring(s, 0, n - 1) end (*------------------------------------------------------------------ * Perform liveness analysis on the floating point variables * P.S. I'm glad I didn't throw away the code liveness code. *------------------------------------------------------------------*) val defUse = P.defUse CB.FP (* def/use properties *) val {liveIn=liveInTable, liveOut=liveOutTable} = Liveness.liveness { defUse=defUse, (* updateCell=C.updateCellsByKind CB.FP, *) getCell=getCell } Cfg (*------------------------------------------------------------------ * Scan the instructions compute the last uses and dead definitions * at each program point. Ideally we can do this during the code * rewriting phase. But that's probably too error prone for now. *------------------------------------------------------------------*) fun computeLastUse(blknum, insns, liveOut) = let fun scan([], _, lastUse) = lastUse | scan(i::instrs, live, lastUse) = let val (d, u) = defUse i val d = SL.uniq(d)(* definitions *) val u = SL.uniq(u)(* uses *) val dead = SL.return(SL.difference(d, live)) val live = SL.difference(live, d) val last = SL.return(SL.difference(u, live)) val live = SL.union(live, u) val _ = if debug andalso debugLiveness then (case last of [] => () | _ => print(assemble i^"\tlast use="^ fregsToString last^"\n") ) else () in scan(instrs, live, (last,dead)::lastUse) end val liveOutSet = SL.uniq liveOut val _ = if debug andalso debugLiveness then print("LiveOut("^i2s blknum^") = "^ fregsToString(SL.return liveOutSet)^"\n") else () in scan(!insns, liveOutSet, []) end (*------------------------------------------------------------------ * Temporary work space *------------------------------------------------------------------*) val {high, low} = C.cellRange CB.FP val n = high+1 val lastUseTbl = A.array(n,~1) (* table for marking last uses *) val useTbl = A.array(n,~1) (* table for marking uses *) (* %fp register bindings before and after a basic block *) val bindingsIn = A.array(numberOfBlks, NONE) val bindingsOut = A.array(numberOfBlks, NONE) val stampCounter = ref ~4096 (* Edges that need splitting *) exception NoEdgesToSplit val edgesToSplit = IntHashTable.mkTable(32, NoEdgesToSplit) val addEdgesToSplit = IntHashTable.insert edgesToSplit fun lookupEdgesToSplit b = getOpt(IntHashTable.find edgesToSplit b, []) (*------------------------------------------------------------------ * Code for handling bindings between basic block *------------------------------------------------------------------*) fun splitEdge(title, source, target, e) = (if debug andalso !traceOn then pr(title^" SPLITTING "^i2s source^"->"^ i2s target^"\n") else (); addEdgesToSplit(target,(source,target,e)::lookupEdgesToSplit target) ) (* Given a cellset, return a sorted and unique * list of elements with all non-physical registers removed *) fun removeNonPhysical celllist = let fun loop([], S) = SL.return(SL.uniq S) | loop(f::fs, S) = let val fx = CB.registerNum f in loop(fs,if fx <= 7 then f::S else S) end in loop(celllist, []) end (* Given a sorted and unique list of registers, * Return a stack with these elements *) fun newStack fregs = let val stack = ST.create() in app (fn f => ST.push(stack, CB.registerNum f)) (rev fregs); stack end (* * This function looks at all the entries on the stack, * and generate code to deallocate all the dead values. * The stack is updated. *) fun removeDeadValues(stack, liveSet, code) = let val stamp = !stampCounter val _ = stampCounter := !stampCounter - 1 fun markLive [] = () | markLive(r::rs) = (A.update(useTbl, CB.registerNum r, stamp); markLive rs) fun isLive f = A.sub(useTbl, f) = stamp fun loop(i, depth, code) = if i >= depth then code else let val f = ST.st(stack, i) in if isLive f (* live? *) then loop(i+1, depth, code) else (if debug andalso !traceOn then pr("REMOVING %f"^i2s f^" in %st("^i2s i^")"^ " current stack="^ST.stackToString stack^"\n") else (); if i = 0 then (ST.pop stack; loop(0, depth-1, POP_ST::code) ) else (ST.xch(stack,0,i); ST.pop stack; loop(0, depth-1, I.fstpl(ST i)::code) ) ) end in markLive liveSet; loop(0, ST.depth stack, code) end (*------------------------------------------------------------------ * Given two stacks, source and target, where the bindings are * permutation of each other, generate the minimal number of * fxchs to match source with target. * * Important: source and target MUST be permutations of each other. * * Essentially, we first decompose the permutation into cycles, * and process each cycle. *------------------------------------------------------------------*) fun shuffle(source, target, code) = let val stamp = !stampCounter val _ = stampCounter := !stampCounter - 1 val permutation = lastUseTbl (* reuse the space *) val _ = if debug andalso !traceOn then pr("SHUFFLE "^ST.stackToString source^ "->"^ST.stackToString target^"\n") else () (* Compute the initial permutation *) val n = ST.depth source fun computeInitialPermutation(i) = if i >= n then () else let val f = ST.st(source, i) val j = ST.fp(target, f) in A.update(permutation, j, i); computeInitialPermutation(i+1) end val _ = computeInitialPermutation 0 (* Decompose the initial permutation into cycles. * The cycle involving 0 is treated specially. *) val visited = useTbl fun isVisited i = A.sub(visited,i) = stamp fun markAsVisited i = A.update(visited,i,stamp) fun decomposeCycles(i, cycle0, cycles) = if i >= n then (cycle0, cycles) else if isVisited i orelse A.sub(permutation, i) = i (* trivial cycle *) then decomposeCycles(i+1, cycle0, cycles) else let fun makeCycle(j, cycle, zero) = let val k = A.sub(permutation, j) val cycle = j::cycle val zero = zero orelse j = 0 in markAsVisited j; if k = i then (cycle, zero) else makeCycle(k, cycle, zero) end val (cycle, zero) = makeCycle(i, [], false) in if zero then decomposeCycles(i+1, [cycle], cycles) else decomposeCycles(i+1, cycle0, cycle::cycles) end val (cycle0, cycles) = decomposeCycles(0, [], []) (* * Generate shuffle for a cycle that does not involve 0. * Given a cycle (c_1, ..., c_k), we generate this code: * fxch %st(c_1), * fxch %st(c_2), * ... * fxch %st(c_k), * fxch %st(c_1) *) fun genxch([], code) = code | genxch(c::cs, code) = genxch(cs, FXCH c::code) fun gen([], code) = error "shuffle.gen" | gen(cs as (c::_), code) = FXCH c::genxch(cs, code) (* * Generate shuffle for a cycle that involves 0. * Given a cycle (c_1,...,c_k) we first shuffle this to * an equivalent cycle (c_1, ..., c_k) where c'_k = 0, * then we generate this code: * fxch %st(c'_1), * fxch %st(c'_2), * ... * fxch %st(c'_{k-1}), *) fun gen0([], code) = error "shuffle.gen0" | gen0(cs, code) = let fun rearrange(0::cs, cs') = cs@rev cs' | rearrange(c::cs, cs') = rearrange(cs, c::cs') | rearrange([], _) = error "shuffle.rearrange" val cs = rearrange(cs, []) in genxch(cs, code) end (* * Generate code. Must process the non-zero cycles first. *) val code = List.foldr gen code cycles val code = List.foldr gen0 code cycle0 in code end (* shuffle *) (*------------------------------------------------------------------ * Insert code at the end of a basic block. * Make sure we put code in front of a transfer instruction *------------------------------------------------------------------*) fun insertAtEnd(insns, code) = (case insns of [] => code | jmp::rest => if P.instrKind jmp = P.IK_JUMP then jmp::code@rest else code@insns ) (*------------------------------------------------------------------ * Magic for inserting shuffle code at the end of a basic block *------------------------------------------------------------------*) fun shuffleOut(stackOut, insns, b, block, liveOut) = let val liveOut = removeNonPhysical(liveOut) (* Generate code that remove unnecessary values *) val code = removeDeadValues(stackOut, liveOut, []) fun done(stackOut, insns, code) = (A.update(bindingsOut,b,SOME stackOut); insertAtEnd(insns, code) ) (* Generate code that shuffle values from source to target *) fun match(source, target) = done(target, insns, shuffle(source, target, [])) (* Generate code that shuffle values from source to liveOut *) fun matchLiveOut() = case liveOut of [] => done(stackOut, insns, code) | _ => match(stackOut, newStack liveOut) (* With multiple successors, find out which one we * should connect to. Choose the one from the block that * follows from this one, if that exists, or else choose * from the edge with the highest frequency. *) fun find([], _, id, best) = (id, best) | find((_, target, _)::edges, highestFreq, id, best) = let val CFG.BLOCK{freq, ...} = #node_info cfg target in if target = b+1 then (target, A.sub(bindingsIn, target)) else (case A.sub(bindingsIn, target) of NONE => find(edges, highestFreq, id, best) | this as SOME stack => if highestFreq < !freq then find(edges, !freq, target, this) else find(edges, highestFreq, id, best) ) end (* * Split all edges source->target except omitThis. *) fun splitAllEdgesExcept([], omitThis) = () | splitAllEdgesExcept((source,target,e)::edges, omitThis) = if target = EXIT then error "can't split exit edge!" else (if target <> omitThis andalso target <= b andalso (* XXX *) target <> ENTRY then splitEdge("ShuffleOut",source,target,e) else (); splitAllEdgesExcept(edges, omitThis) ) (* Just one successor; * try to match the bindings of the successor if it exist. *) fun matchIt succ = let val (succBlock, target) = find(succ, ~1, ~1, NONE) in splitAllEdgesExcept(succ, succBlock); case target of SOME stackIn => match(stackOut, stackIn) | NONE => done(stackOut,insns,code) end in case #out_edges cfg b of [] => matchLiveOut() | succ as [(_,target,_)] => if target = EXIT then matchLiveOut() else matchIt succ | succ => matchIt succ end (* shuffleOut *) (*------------------------------------------------------------------ * Compute the initial fp stack bindings for basic block b. *------------------------------------------------------------------*) fun shuffleIn(b, block, liveIn) = let val liveInSet = removeNonPhysical liveIn (* With multiple predecessors, find out which one we * should connect to. Choose the one from the block that * falls into this one, if that exists, or else choose * from the edge with the highest frequency. *) fun find([], _, best) = best | find((source, _, _)::edges, highestFreq, best) = let val CFG.BLOCK{freq, ...} = #node_info cfg source in case A.sub(bindingsOut, source) of NONE => find(edges, highestFreq, best) | this as SOME stack => if source = b-1 then this (* falls into b *) else if highestFreq < !freq then find(edges, !freq, this) else find(edges, highestFreq, best) end fun splitAllDoneEdges [] = () | splitAllDoneEdges ((source, target, e)::edges) = (if source < b andalso source <> ENTRY andalso source <> EXIT then splitEdge("ShuffleIn", source, target, e) else (); splitAllDoneEdges edges ) (* The initial stack bindings are determined by the live set. * No compensation code is needed. *) fun fromLiveIn() = let val stackIn = case liveInSet of [] => ST.stack0 | _ => (pr("liveIn="^celllistToString liveIn^"\n"); newStack liveInSet ) val stackOut = ST.copy stackIn in (stackIn, stackOut, []) end val pred = #in_edges cfg b val (stackIn, stackOut, code) = case find(pred, ~1, NONE) of NONE => (splitAllDoneEdges(pred); fromLiveIn()) | SOME stackIn' => (case pred of [_] => (* one predecessor *) (* Use the bindings as from the previous block * We first have to deallocate all unused values. *) let val stackOut = ST.copy stackIn' (* Clean the stack of unused entries *) val code = removeDeadValues(stackOut, liveInSet, []) in (stackIn', stackOut, code) end | pred => (* more than one predecessors *) let val stackIn = ST.copy stackIn' val code = removeDeadValues(stackIn, liveInSet, []) val stackOut = ST.copy stackIn in (* If we have to generate code to deallocate * the stack then we have split the edge. *) case code of [] => () | _ => splitAllDoneEdges(pred); (stackIn, stackOut, []) end ) in A.update(bindingsIn, b, SOME stackIn); A.update(bindingsOut, b, SOME stackOut); (stackIn, stackOut, code) end (*------------------------------------------------------------------ * Code for patching up critical edges. * The trick is finding a good place to insert the critical edges. * Let's call an edge x->y that requires compensation * code c to be inserted an candidate edge. We write this as x->y(c) * * Here are the heuristics that we use to improve the final code: * * 1. Given two candidate edges a->x(c1) and b->x(c2) where c1=c2 * then we can merge the two copies of compensation code. * This is quite common. This generalizes to any number of edges. * * 2. Given two candidate edges a->x(c1) and b->x(c2) and where * c1 and c2 are pops, we can partially share c1 and c2. * Currently, I think I only recognize this case when * x has no fp registers live-in. * * 3. Given two candidate edges a->x(c1) and b->x(c2), * if a->x has a higher frequency then put the compensation * code in front of x (so that it falls through into x) * whenever possible. * * As you can see, the voodoo is strong here. * * The routine has two main phases: * 1. Determine the compensation code by applying the heuristics * above. * 2. Then insert them and rebuild the cfg by renaming all block * ids. This is currently necessary to keep the layout order * consistent with the order of the id. *------------------------------------------------------------------*) fun repairCriticalEdges(Cfg as G.GRAPH cfg) = let (* Data structure for recording critical edge splitting info *) datatype compensationCode = NEWEDGE of {label:L.label, (* label of new block *) entries:CFG.edge list ref, (* edges going into this code *) code:I.instruction list, (* code *) comment:an } val cleanup = [#create MLRiscAnnotations.COMMENT "cleanup edge"] val critical = [#create MLRiscAnnotations.COMMENT "critical edge"] exception Nothing (* Repair code table; mapping from block id -> compensation code *) val repairCodeTable = IntHashTable.mkTable(32, Nothing) val addRepairCode = IntHashTable.insert repairCodeTable fun lookupRepairCode b = getOpt(IntHashTable.find repairCodeTable b,[]) (* Repair code table; mapping from block id -> compensation code * These must be relocated ... *) val repairCodeTable' = IntHashTable.mkTable(32, Nothing) val addRepairCode' = IntHashTable.insert repairCodeTable' fun lookupRepairCode' b = getOpt(IntHashTable.find repairCodeTable' b,[]) (* Does the given block falls thru from the previous block? * If the previous block is ENTRY then also consider this to be true *) fun isFallsThru b = case #in_edges cfg b of [(b',_,_)] => (case CFG.fallsThruTo(Cfg,b') of SOME b'' => b'' = b | NONE => b' = ENTRY ) | _ => false (* Create jump instruction to a block *) fun jump(CFG.BLOCK{labels, ...}) = (case !labels of [] => error "no label to target of critical edge!" | l::_ => P.jump l ) (* * Special case: target block has stack depth of 0. * Just generate code that pop entries from the sources. * To make things interesting, we try to share code among * all the critical edges. *) fun genPoppingCode(_, []) = () | genPoppingCode(targetBlk, edges as (_,target,_)::_) = let val entries = map (fn edge as (source, _, _) => let val n = ST.depth(valOf(A.sub(bindingsOut,source))) in (n, edge) end ) edges (* Ordered by increasing stack height *) val entries = ListMergeSort.sort (fn ((n,_),(m,_)) => n > m) entries val relocate = isFallsThru target fun pop(0, code) = code | pop(n, code) = pop(n-1,POP_ST::code) fun makeCode(popCount, rest) = let val code = pop(popCount, []) in case rest of [] => if relocate then jump(#node_info cfg target)::code else code | _ => code end (* Generate code, share code between edges that * have to pop the same number of elements *) fun gen([], h, code) = code | gen((n,e)::rest, _, []) = gen(rest, n, [NEWEDGE{label=L.anon(), entries=ref [e], code=makeCode(n,rest), comment=cleanup } ]) | gen((n,e)::rest, h, all as (NEWEDGE{entries, ...}::_)) = gen(rest,n, if n = h then (entries := e :: !entries; all) else NEWEDGE{label=L.anon(), entries=ref [e], code=makeCode(n-h,rest), comment=cleanup }::all ) val repairCode = gen(entries, 0, []) in (if relocate then addRepairCode' else addRepairCode) (target, repairCode) end (* The general case: * Remove dead values, then * Shuffle. *) fun genRepairCode(target, targetBlk, stackIn, edges) = let val repairList = ref [] val repairCount = ref 0 val SOME stackIn = A.sub(bindingsIn, target) fun repair(edge as (source, _, _)) = let val SOME stackOut' = A.sub(bindingsOut, source) fun createNewRepairEdge() = let val stackOut = ST.copy stackOut' val liveIn = IntHashTable.lookup liveInTable target val liveInSet = removeNonPhysical liveIn val _ = if debug then pr("LiveIn = "^celllistToString liveIn^"\n") else () (* deallocate unused values *) val code = removeDeadValues(stackOut, liveInSet, []) (* shuffle values *) val code = shuffle(stackOut, stackIn, code) fun addNewEdge() = let (* Do we need to relocate this block? *) val relocate = !repairCount > 0 orelse isFallsThru target andalso source + 1 <> target (* add a jump to the target block *) val code = if relocate then jump targetBlk::code else code val repairCode = NEWEDGE{label=L.anon(), entries=ref [edge], code=code, comment=critical } in repairCount := !repairCount + 1; repairList := (repairCode, stackOut') :: !repairList; if relocate then addRepairCode'(target, repairCode::lookupRepairCode' target) else addRepairCode(target, repairCode::lookupRepairCode target) end in case #out_edges cfg source of [(_,j,_)] => if j = target then (*insert code at predecessor*) let val CFG.BLOCK{insns,...} = #node_info cfg source in insns := insertAtEnd(!insns, code) end else addNewEdge() | _ => addNewEdge() end fun shareRepairEdge [] = false | shareRepairEdge ((NEWEDGE{entries,...},stackOut'')::rest) = if ST.equal(stackOut'', stackOut') then (entries := edge :: !entries; true) else shareRepairEdge rest in if shareRepairEdge(!repairList) then () else createNewRepairEdge() end in app repair edges end (* * Code to split critical edges entering block target *) fun split(target, edges) = let val SOME stackIn = A.sub(bindingsIn,target) fun log(s, t, e) = let val SOME stackOut = A.sub(bindingsOut,s) in pr("SPLIT "^i2s s^"->"^i2s t^" "^ ST.stackToString stackOut^"->"^ ST.stackToString stackIn^"\n") end val _ = if debug andalso !traceOn then app log edges else () val targetBlk = #node_info cfg target in if ST.depth stackIn = 0 then genPoppingCode(targetBlk,edges) else genRepairCode(target, targetBlk, stackIn, edges) end (* * Create a new empty cfg with the same graph info as the old one. *) val Cfg' as G.GRAPH cfg' = CFG.cfg (#graph_info cfg) (* * Renumber all the blocks and insert compensation code at the * right places. *) fun renumberBlocks() = let (* Mapping from label to new node ids *) val labelMap = HashTable.mkTable (L.hash,L.same) (32, Nothing) val mapLabelToId = HashTable.insert labelMap (* Mapping from old id to new id *) val idMap = IntHashTable.mkTable (32, Nothing) val mapOldIdToNewId = IntHashTable.insert idMap val oldIdToNewId = IntHashTable.lookup idMap (* Retarget a jump instruction to label l *) fun retargetJump(I.INSTR(I.JMP(I.ImmedLabel(T.LABEL _), [_])), l) = I.jmp(I.ImmedLabel(T.LABEL l), [l]) | retargetJump(I.INSTR(I.JCC{cond,opnd=I.ImmedLabel(T.LABEL _)}),l)= I.jcc{cond=cond,opnd=I.ImmedLabel(T.LABEL l)} | retargetJump(I.ANNOTATION{i,a},l) = I.ANNOTATION{i=retargetJump(i,l),a=a} | retargetJump(_,l) = error "retargetJump" (* * Given a candidate edge, generate compensation code. *) fun transRepair(n, []) = n | transRepair(n, NEWEDGE{label,entries,code,comment}::rest) = let val this = CFG.BLOCK{id=n, kind=CFG.NORMAL, freq=ref 0, (* XXX Wrong frequency! *) labels=ref [label], insns=ref code, annotations=ref comment, align=ref NONE } (* * Update the instructions to predecessors of this edge. *) fun retarget(CFG.BLOCK{kind=CFG.START,...}) = () | retarget(CFG.BLOCK{insns as ref(jmp::rest), ...}) = insns := retargetJump(jmp, label)::rest | retarget _ = error "retarget" fun retargetEntries(pred,_,CFG.EDGE{a,...}) = (retarget(#node_info cfg pred); a := TargetMovedTo n :: !a ) in if debug andalso !traceOn then pr("Inserting critical edge at block "^i2s n^" "^ L.toString label^"\n") else (); #add_node cfg' (n, this); (* insert block *) mapLabelToId(label, n); app retargetEntries (!entries); transRepair(n+1, rest) end (* * Renumber all the blocks and insert repair code. *) fun renumber(n, [], repairCode') = transRepair(n, repairCode') | renumber(n, (blknum, block as CFG.BLOCK{kind,annotations,insns,freq,align,labels, ...})::rest, repairCode') = let (* If we have outstanding repair code and this is * NOT a fallsthru entry, then insert them here. *) val (n, repairCode') = case repairCode' of [] => (n, []) | _ => if isFallsThru blknum then (n, repairCode') else (transRepair(n, repairCode'), []) (* Insert non-relocatable repair code *) val repairCode = lookupRepairCode blknum val n = transRepair(n, repairCode) (* Create this block *) val this = CFG.BLOCK{id=n, kind=kind, freq=freq, align=align, labels=labels, insns=insns, annotations=annotations } (* Insert new relocatable repair code *) val repairCode' = repairCode' @ lookupRepairCode' blknum (* Insert labels that map to this block *) val _ = app (fn l => mapLabelToId(l, n)) (!labels) (* Insert block *) val _ = #add_node cfg' (n, this) val _ = mapOldIdToNewId(blknum, n) in case kind of CFG.START => #set_entries cfg' [n] | CFG.STOP => #set_exits cfg' [n] | _ => (); renumber(n+1, rest, repairCode') end (* Do all the blocks *) val n = renumber(0, #nodes cfg (), []) val [newExit] = #exits cfg' () (* * Given a label, finds out which block it targets. * If not found then it means the block is escaping. *) val findLabel = HashTable.find labelMap fun labelToBlockId l = getOpt(findLabel l, newExit) fun hasJump x = let val CFG.BLOCK{insns, ...} = #node_info cfg' x in case !insns of [] => false | jmp::_ => P.instrKind jmp = P.IK_JUMP end (* * Now rebuild all the old edges. * For each edge, makes sure the target hasn't been moved. *) fun renameEdge(x, y, e as CFG.EDGE{a,k,w,...}) = let val x = oldIdToNewId x val (z, e) = case !a of TargetMovedTo z::an => let val e = case k of (CFG.FALLSTHRU | CFG.BRANCH false) => if hasJump x then CFG.EDGE{a=a, w=w, k=CFG.JUMP} else e | _ => e in a := an; (* remove the marker *) (z, e) end | _ => (oldIdToNewId y, e) in #add_edge cfg' (x,z,e) end val _ = #forall_edges cfg renameEdge (* * Now add new edges x->y where x is a new compensation block *) fun addNewEdge(NEWEDGE{label, code, entries, ...}) = let val x = labelToBlockId label val (y, k) = case code of [] => (x + 1, CFG.FALLSTHRU) (* next block *) | jmp::_ => if P.instrKind jmp = P.IK_JUMP then (case P.branchTargets jmp of [P.LABELLED l] => (labelToBlockId l, CFG.JUMP) | _ => error "addNewEdge where is the target?" ) else (x + 1, CFG.FALLSTHRU) (* compute weight *) val w = List.foldr (fn ((_,_,CFG.EDGE{w,...}),n) => !w+n) 0 (!entries) in #add_edge cfg' (x, y, CFG.EDGE{a=ref [], w=ref w, k=k}) end val addNewEdges = app addNewEdge val _ = IntHashTable.app addNewEdges repairCodeTable val _ = IntHashTable.app addNewEdges repairCodeTable' in Cfg' end in IntHashTable.appi split edgesToSplit; renumberBlocks() end (*------------------------------------------------------------------ * Process all blocks which are not the entry or the exit *------------------------------------------------------------------*) val stamp = ref 0 fun rewriteAllBlocks (_, CFG.BLOCK{kind=CFG.START, ...}) = () | rewriteAllBlocks (_, CFG.BLOCK{kind=CFG.STOP, ...}) = () | rewriteAllBlocks (blknum, block as CFG.BLOCK{insns, labels, annotations, ...}) = let val _ = if debug andalso !debugOn then app (fn l => pr(L.toString l^":\n")) (!labels) else (); val liveIn = HT.lookup liveInTable blknum val liveOut = HT.lookup liveOutTable blknum val st = rewrite(!stamp, blknum, block, insns, liveIn, liveOut, annotations) in stamp := st (* update stamp *) end (*------------------------------------------------------------------ * Translate code within a basic block. * Each instruction is given a unique stamp for identifying last * uses. *------------------------------------------------------------------*) and rewrite(stamp, blknum, block, insns, liveIn, liveOut, annotations) = let val (stackIn, stack, code) = shuffleIn(blknum, block, liveIn) (* Dump instructions when encountering a bug *) fun bug msg = (pr("-------- bug in block "^i2s blknum^" ----\n"); dump(!insns); error msg ) fun loop(stamp, [], [], code) = (stamp, code) | loop(stamp, instr::rest, (lastUse,dead)::lastUses, code) = let fun mark(tbl, []) = () | mark(tbl, r::rs) = (A.update(tbl, CB.registerNum r, stamp); mark(tbl, rs)) in mark(lastUseTbl,lastUse); (* mark all last uses *) trans(stamp, instr, [], rest, dead, lastUses, code) end | loop _ = error "loop" (* * Main routine that does the actual translation. * A few reminders: * o The instructions are processed in normal order * and generated in the reversed order. * o (Local) liveness is computed at the same time. * o For each use, we have to find out whether it is * the last use. If so, we can kill it and reclaim * the stack entry at the same time. *) and trans(stamp, instr, an, rest, dead, lastUses, code) = let (* Call this continuation when done with code generation *) fun FINISH code = loop(stamp+1, rest, lastUses, code) fun KILL_THE_DEAD(dead, code) = let fun kill([], code) = FINISH code | kill(f::fs, code) = let val fx = CB.registerNum f in if debug andalso debugDead then pr("DEAD "^fregToString f^" in "^ ST.stackToString stack^"\n") else (); (* not a physical register *) if fx >= 8 then kill(fs, code) else let val i = ST.fp(stack, fx) in if debug andalso debugDead then pr("KILLING "^fregToString f^ "=%st("^i2s i^")\n") else (); if i < 0 then kill(fs, code) (* dead already *) else if i = 0 then (ST.pop stack; kill(fs, POP_ST::code)) else (ST.xch(stack,0,i); ST.pop stack; kill(fs, I.fstpl(ST i)::code) ) end end in kill(dead, code) end (* Call this continuation when done with floating point * code generation. Remove all dead code first. *) fun DONE code = KILL_THE_DEAD(dead, code) (* Is this the last use of register f? *) fun isLastUse f = A.sub(lastUseTbl, f) = stamp (* Is this value dead? *) fun isDead f = let fun loop [] = false | loop(r::rs) = CB.sameColor(f,r) orelse loop rs in loop dead end (* Dump the stack before each intruction for debugging *) fun log() = if debug andalso !traceOn then pr(ST.stackToString stack^assemble instr^"...\n") else () (* Find the location of a source register *) fun getfs(f) = let val fx = CB.registerNum f val s = ST.fp(stack, fx) in (isLastUse fx,s) end (* Generate memory to memory move *) fun mmmove(fsize,src,dst) = let val _ = ST.nonFull stack val code = FLD(fsize,src)::code val code = mark(FSTP(fsize,dst),an)::code in DONE code end (* Allocate a new register in %st(0) *) fun alloc(f,code) = (ST.push(stack,CB.registerNum f); code) (* register -> register move *) fun rrmove(fs,fd) = if CB.sameColor(fs,fd) then DONE code else let val (dead,ss) = getfs fs in if dead then (* fs is dead *) (ST.set(stack,ss,CB.registerNum fd); (* rename fd to fs *) DONE code (* no code is generated *) ) else (* fs is not dead; push it onto %st(0); * set fd to %st(0) *) let val code = alloc(fd, code) in DONE(mark(I.fldl(ST ss),an)::code) end end (* memory -> register move. * Do dead code elimination here. *) fun mrmove(fsize,src,fd) = if isDead fd then FINISH code (* value has been killed *) else let val code = alloc(fd, code) in DONE(mark(FLD(fsize,src),an)::code) end (* exchange %st(n) and %st(0) *) fun xch(n) = (ST.xch(stack,0,n); FXCH n) (* push %st(n) onto the stack *) fun push(n) = (ST.push(stack,~2); I.fldl(ST n)) (* push mem onto the stack *) fun pushmem(src) = (ST.push(stack,~2); I.fldl(src)) (* register -> memory move. * Use pop version of the opcode if it is the last use. *) fun rmmove(fsize,fs,dst) = let fun fstp(code) = (ST.pop stack; DONE(mark(FSTP(fsize,dst),an)::code)) fun fst(code) = DONE(mark(FST(fsize,dst),an)::code) in case getfs fs of (true, 0) => fstp code | (true, n) => fstp(xch n::code) | (false, 0) => fst(code) | (false, n) => fst(xch n::code) end (* Floating point move *) fun fmove{fsize,src=I.FPR fs,dst=I.FPR fd} = rrmove(fs,fd) | fmove{fsize,src,dst=I.FPR fd} = mrmove(fsize,src,fd) | fmove{fsize,src=I.FPR fs,dst} = rmmove(fsize,fs,dst) | fmove{fsize,src,dst} = mmmove(fsize,src,dst) (* Floating point integer load operator *) fun fiload{isize,ea,dst=I.FPR fd} = let val code = alloc(fd, code) val code = mark(FILD(isize,ea),an)::code in DONE code end | fiload{isize,ea,dst} = let val code = mark(FILD(isize,ea),an)::code val code = I.fstpl(dst)::code (* XXX *) in DONE code end (* Make a copy of register fs to %st(0). *) fun moveregtotop(fs, code) = (case getfs fs of (true, 0) => code | (true, n) => xch n::code | (false, n) => push n::code ) fun movememtotop(fsize, mem, code) = (ST.push(stack, ~2); FLD(fsize, mem)::code) (* Move an operand to top of stack *) fun movetotop(fsize, I.FPR fs, code) = moveregtotop(fs, code) | movetotop(fsize, mem, code) = movememtotop(fsize, mem, code) fun storeResult(fsize, dst, n, code) = case dst of I.FPR fd => (ST.set(stack, n, CB.registerNum fd); DONE code) | mem => let val code = if n = 0 then code else xch n::code in ST.pop stack; DONE(FSTP(fsize, mem)::code) end (* Floating point unary operator *) fun funop{fsize,unOp,src,dst} = let val code = movetotop(fsize, src, code) val code = mark(I.funary unOp,an)::code (* Moronic hack to deal with partial tangent! *) val code = case unOp of I.FPTAN => (if ST.depth stack >= 7 then error "FPTAN" else (); POP_ST::code (* pop the useless 1.0 *) ) | _ => code in storeResult(fsize, dst, 0, code) end (* Floating point binary operator. * Note: * binop src, dst * means dst := dst binop src * (lsrc := lsrc binop rsrc) * on the x86 *) fun fbinop{fsize,binOp,lsrc,rsrc,dst} = let (* generate code and set %st(n) = fd *) (* op2 := op1 - op2 *) fun oper(binOp,op1,op2,n,code) = let val code = mark(I.fbinary{binOp=binOp,src=op1,dst=op2},an) ::code in storeResult(I.FP64, dst, n, code) end fun operR(binOp,op1,op2,n,code) = oper(invert binOp,op1,op2,n,code) fun operP(binOp,op1,op2,n,code) = (ST.pop stack; oper(pop binOp,op1,op2,n-1,code)) fun operRP(binOp,op1,op2,n,code) = (ST.pop stack; operR(pop binOp,op1,op2,n-1,code)) (* Many special cases to consider. * Basically, try to reuse stack space as * much as possible by taking advantage of last uses. * * Stack=[st(0)=3.0 st(1)=2.0] * fsub %st(1), %st [1,2.0] * fsubr %st(1), %st [-1,2.0] * fsub %st, %st(1) [3.0,1.0] * fsubr %st, %st(1) [3.0,-1.0] * * fsubp %st, %st(1) [1] * fsubrp %st, %st(1) [-1] * So, * fsub %st(n), %st (means %st - %st(n) -> %st) * fsub %st, %st(n) (means %st - %st(n) -> %st(n)) * fsubr %st(n), %st (means %st(n) - %st -> %st) * fsubr %st, %st(n) (means %st(n) - %st -> %st(n)) *) fun reg2(fx, fy) = let val (dx, sx) = getfs fx val (dy, sy) = getfs fy fun loop(dx, sx, dy, sy, code) = (* op1, op2 (dst) *) case (dx, sx, dy, sy) of (true, 0, false, n) => oper(binOp,ST n,ST0,0,code) | (false, n, true, 0) => operR(binOp,ST n,ST0,0,code) | (true, n, true, 0) => operRP(binOp,ST0,ST n,n,code) | (true, 0, true, n) => operP(binOp,ST0,ST n,n,code) | (false, 0, true, n) => oper(binOp,ST0,ST n,n,code) | (true, n, false, 0) => operR(binOp,ST0,ST n,n,code) | (true, sx, dy, sy) => loop(true, 0, dy, sy, xch sx::code) | (dx, sx, true, sy) => loop(dx, sx, true, 0, xch sy::code) | (false, sx, false, sy) => loop(true, 0, false, sy+1, push sx::code) in if sx = sy then (* same register *) let val code = case (dx, sx) of (true, 0) => code | (true, n) => xch n::code | (false, n) => push n::code in oper(binOp,ST0,ST0,0,code) end else loop(dx, sx, dy, sy, code) end (* reg/mem operands *) fun regmem(binOp, fx, mem) = case getfs fx of (true, 0) => oper(binOp,mem,ST0,0,code) | (true, n) => oper(binOp,mem,ST0,0,xch n::code) | (false, n) => oper(binOp,mem,ST0,0,push n::code) (* Two memory operands. Optimize the case when * the two operands are identical. *) fun mem2(lsrc, rsrc) = let val _ = ST.push(stack,~2) val code = FLD(fsize,lsrc)::code val rsrc = if P.eqOpn(lsrc, rsrc) then ST0 else rsrc in oper(binOp,rsrc,ST0,0,code) end fun process(I.FPR fx, I.FPR fy) = reg2(fx, fy) | process(I.FPR fx, mem) = regmem(binOp, fx, mem) | process(mem, I.FPR fy) = regmem(invert binOp, fy, mem) | process(lsrc, rsrc) = mem2(lsrc, rsrc) in process(lsrc, rsrc) end (* Floating point binary operator with integer conversion *) fun fibinop{isize,binOp,lsrc,rsrc,dst} = let fun oper(binOp,src,code) = let val code = mark(I.fibinary{binOp=binOp,src=src},an) ::code in storeResult(I.FP64, dst, 0, code) end fun regmem(binOp, fx, mem) = case getfs fx of (true, 0) => oper(binOp, mem, code) | (true, n) => oper(binOp, mem, xch n::code) | (false, n) => oper(binOp, mem, push n::code) in case (lsrc, rsrc) of (I.FPR fx, mem) => regmem(binOp, fx, mem) | (lsrc, rsrc) => oper(binOp, rsrc, pushmem lsrc::code) end (* Floating point comparison * We have to make sure there are enough registers. * The trick is that tmp is always a physical register. * So we can always use it as temporary space if we * have run out. *) fun fcmp{fsize,lsrc,rsrc} = let fun fucompp() = (ST.pop stack; ST.pop stack; mark(I.fucompp,an)) fun fucomp(n) = (ST.pop stack; mark(I.fucomp(ST n),an)) fun fucom(n) = mark(I.fucom(ST n),an) fun genmemcmp() = let val code = movememtotop(fsize, rsrc, code) val code = movememtotop(fsize, lsrc, code) in FINISH(fucompp()::code) end fun genmemregcmp(lsrc, fy) = case getfs fy of (false, n) => let val code = movememtotop(fsize, lsrc, code) in FINISH(fucomp(n+1)::code) end | (true, n) => let val code = if n = 0 then code else xch n::code val code = movememtotop(fsize, lsrc, code) in FINISH(fucompp()::code) end fun genregmemcmp(fx, rsrc) = let val code = case getfs fx of (true, n) => let val code = if n = 0 then code else xch n::code val code = movememtotop(fsize, rsrc, code) in xch 1::code end | (false, n) => let val code = movememtotop(fsize, rsrc, code) in push(n+1)::code end in FINISH(fucompp()::code) end (* Deal with the special case when both sources are * in the same register *) fun regsame(dx, sx) = let val (code, cmp) = case (dx, sx) of (true, 0) => (code, fucomp 0) (* pop once! *) | (false, 0) => (code, fucom 0) (* don't pop! *) | (true, n) => (xch n::code, fucomp 0) | (false, n) => (xch n::code, fucom 0) in FINISH(cmp::code) end fun reg2(fx, fy) = (* special case is when things are already in place. * Note: should also generate FUCOM and FUCOMP!!! *) let val (dx, sx) = getfs fx val (dy, sy) = getfs fy fun fstp(n) = (ST.xch(stack,n,0); ST.pop stack; I.fstpl(ST n)) in if sx = sy then regsame(dx, sx) (* same register!*) else (* first, move sx to %st(0) *) let val (sy, code) = if sx = 0 then (sy, code) (* there already *) else (if sy = 0 then sx else sy, xch sx::code) (* Generate the appropriate comparison op *) val (sy, cmp, popY) = case (dx, dy, sy) of (true, true, 0) => (~1, fucompp(), false) | (true, _, _) => (sy-1, fucomp sy, dy) | (false, _, _) => (sy, fucom sy, dy) val code = cmp::code (* Pop fy if it is dead and hasn't already * been popped. *) val code = if popY then fstp sy::code else code in FINISH code end end in case (lsrc, rsrc) of (I.FPR x, I.FPR y) => reg2(x, y) | (I.FPR x, mem) => genregmemcmp(x, mem) | (mem, I.FPR y) => genmemregcmp(mem, y) | _ => genmemcmp() end fun prCopy(dst, src) = ListPair.app(fn (fd, fs) => pr(fregToString(fd)^"<-"^fregToString fs^" ")) (dst, src) (* Parallel copy magic. * For each src registers, we find out * 1. whether it is the last use, and if so, * 2. whether it is used more than once. * If a source is a last and unique use, then we * can simply rename it to appropriate destination register. *) fun fcopy(I.COPY{dst,src,tmp,...}) = let fun loop([], [], copies, renames) = (copies, renames) | loop(fd::fds, fs::fss, copies, renames) = let val fsx = CB.registerNum fs in if isLastUse fsx then if A.sub(useTbl,fsx) <> stamp (* unused *) then (A.update(useTbl,fsx,stamp); loop(fds, fss, copies, if CB.sameColor(fd,fs) then renames else (fd, fs)::renames) ) else loop(fds, fss, (fd, fs)::copies, renames) else loop(fds, fss, (fd, fs)::copies, renames) end | loop _ = error "fcopy.loop" (* generate code for the copies *) fun genCopy([], code) = code | genCopy((fd, fs)::copies, code) = let val ss = ST.fp(stack, CB.registerNum fs) val _ = ST.push(stack, CB.registerNum fd) val code = I.fldl(ST ss)::code in genCopy(copies, code) end (* perform the renaming; it must be done in parallel! *) fun renaming(renames) = let val ss = map (fn (_,fs) => ST.fp(stack,CB.registerNum fs)) renames in ListPair.app (fn ((fd,_),ss) => ST.set(stack,ss,CB.registerNum fd)) (renames, ss) end (* val _ = if debug then (ListPair.app (fn (fd, fs) => pr(fregToString(regmap fd)^"<-"^ fregToString(regmap fs)^" ") ) (dst, src); pr "\n") else () *) val (copies, renames) = loop(dst, src, [], []) val code = genCopy(copies, code) in renaming renames; case tmp of SOME(I.FPR f) => (if debug andalso debugDead then pr("KILLING tmp "^fregToString f^"\n") else (); ST.kill(stack, f) ) | _ => (); DONE code end fun call(instr, return) = let val code = mark(I.INSTR instr, an)::code val returnSet = SL.return(SL.uniq(getCell return)) in case returnSet of [] => () | [r] => ST.push(stack, CB.registerNum r) | _ => error "can't return more than one fp argument (yet)"; KILL_THE_DEAD(List.filter isDead returnSet, code) end fun x86trans instr = (case instr of I.FMOVE x => (log(); fmove x) | I.FBINOP x => (log(); fbinop x) | I.FIBINOP x => (log(); fibinop x) | I.FUNOP x => (log(); funop x) | I.FILOAD x => (log(); fiload x) | I.FCMP x => (log(); fcmp x) (* handle calling convention *) | I.CALL{return, ...} => (log(); call(instr,return)) (* * Catch instructions that absolutely * should not have been generated at this point. *) | (I.FLD1 | I.FLDL2E | I.FLDLG2 | I.FLDLN2 | I.FLDPI | I.FLDZ | I.FLDL _ | I.FLDS _ | I.FLDT _ | I.FILD _ | I.FILDL _ | I.FILDLL _ | I.FENV _ | I.FBINARY _ | I.FIBINARY _ | I.FUNARY _ | I.FUCOMPP | I.FUCOM _ | I.FUCOMP _ | I.FCOMPP | I.FXCH _ | I.FSTPL _ | I.FSTPS _ | I.FSTPT _ | I.FSTL _ | I.FSTS _ ) => bug("Illegal FP instructions") (* Other instructions are untouched *) | instr => FINISH(mark(I.INSTR instr, an)::code) (*esac*)) in case instr of I.ANNOTATION{a,i} => trans(stamp, i, a::an, rest, dead, lastUses, code) | I.COPY{k=CB.FP, ...} => (log(); fcopy instr) | I.LIVE _ => DONE(mark(instr, an)::code) | I.INSTR instr => x86trans(instr) | _ => FINISH(mark(instr, an)::code) end (* trans *) (* * Check the translation result to see if it matches the original * code. *) fun checkTranslation(stackIn, stackOut, insns) = let val n = ref(ST.depth stackIn) fun push() = n := !n + 1 fun pop() = n := !n - 1 fun scan(I.INSTR(I.FBINARY{binOp, ...})) = (case binOp of ( I.FADDP | I.FSUBP | I.FSUBRP | I.FMULP | I.FDIVP | I.FDIVRP) => pop() | _ => () ) | scan(I.INSTR(I.FIBINARY{binOp, ...})) = () | scan(I.INSTR(I.FUNARY I.FPTAN)) = push() | scan(I.INSTR(I.FUNARY _)) = () | scan(I.INSTR(I.FLDL(I.ST n))) = push() | scan(I.INSTR(I.FLDL mem)) = push() | scan(I.INSTR(I.FLDS mem)) = push() | scan(I.INSTR(I.FLDT mem)) = push() | scan(I.INSTR(I.FSTL(I.ST n))) = () | scan(I.INSTR(I.FSTPL(I.ST n))) = pop() | scan(I.INSTR(I.FSTL mem)) = () | scan(I.INSTR(I.FSTS mem)) = () | scan(I.INSTR(I.FSTPL mem)) = pop() | scan(I.INSTR(I.FSTPS mem)) = pop() | scan(I.INSTR(I.FSTPT mem)) = pop() | scan(I.INSTR(I.FXCH{opnd=i,...})) = () | scan(I.INSTR(I.FUCOM _)) = () | scan(I.INSTR(I.FUCOMP _)) = pop() | scan(I.INSTR(I.FUCOMPP)) = (pop(); pop()) | scan(I.INSTR(I.FILD mem)) = push() | scan(I.INSTR(I.FILDL mem)) = push() | scan(I.INSTR(I.FILDLL mem)) = push() | scan(I.INSTR(I.CALL{return, ...})) = (n := 0; (* clear the stack *) (* Simulate the pushing of arguments *) let val returnSet = SL.return(SL.uniq(getCell return)) in app (fn _ => push()) returnSet end ) | scan _ = () val _ = app scan (rev insns); val n = !n val m = ST.depth stackOut in if n <> m then (dump(insns); bug("Bad translation n="^i2s n^ " expected="^i2s m^"\n") ) else () end (* Dump the initial code *) val _ = if debug andalso !debugOn then (pr("-------- block "^i2s blknum^" ----"^ celllistToString liveIn^" "^ ST.stackToString stackIn^"\n"); dump (!insns); pr("succ="); app (fn b => pr(i2s b^" ")) (#succ cfg blknum); pr("\n") ) else () (* Compute the last uses *) val lastUse = computeLastUse(blknum, insns, liveOut) (* Rewrite the code *) val (stamp, insns') = loop(stamp, rev(!insns), lastUse, code) (* Insert shuffle code at the end if necessary *) val insns' = shuffleOut(stack, insns', blknum, block, liveOut) (* Dump translation *) val _ = if debug andalso !debugOn then (pr("-------- translation "^i2s blknum^"----"^ celllistToString liveIn^" "^ ST.stackToString stackIn^"\n"); dump insns'; pr("-------- done "^i2s blknum^"----"^ celllistToString liveOut^" "^ ST.stackToString stack^"\n") ) else () (* Check if things are okay *) val _ = if debug andalso sanityCheck then checkTranslation(stackIn, stack, insns') else () in insns := insns'; (* update the instructions *) stamp end (* process *) in (* Translate all blocks *) stamp := C.firstPseudo; #forall_nodes cfg rewriteAllBlocks; (* If we found critical edges, then we have to split them... *) if IntHashTable.numItems edgesToSplit = 0 then Cfg else repairCriticalEdges(Cfg) end end (* functor *) end (* local *)
root@smlnj-gforge.cs.uchicago.edu | ViewVC Help |
Powered by ViewVC 1.0.0 |