20 |
|
|
21 |
\newcommand{\matM}{\mathbf{M}} |
\newcommand{\matM}{\mathbf{M}} |
22 |
\newcommand{\vecx}{\mathbf{x}} |
\newcommand{\vecx}{\mathbf{x}} |
23 |
|
\newcommand{\vecp}{\mathbf{p}} |
24 |
\newcommand{\vecn}{\mathbf{n}} |
\newcommand{\vecn}{\mathbf{n}} |
25 |
\newcommand{\vecf}{\mathbf{f}} |
\newcommand{\vecf}{\mathbf{f}} |
26 |
\newcommand{\VEC}[1]{\left\langle{#1}\right\rangle} |
\newcommand{\VEC}[1]{\left\langle{#1}\right\rangle} |
146 |
The more common case is when the field is a convolution of a scalar 3-dimensional |
The more common case is when the field is a convolution of a scalar 3-dimensional |
147 |
field ($F = V\circledast{}h$). |
field ($F = V\circledast{}h$). |
148 |
Let $s$ be the support of $h$. |
Let $s$ be the support of $h$. |
149 |
Then the probe $F\mkw{@}\vecx$ is computed as follows: |
Then the probe $F\mkw{@}\vecp$ is computed as follows: |
150 |
\begin{eqnarray*} |
\begin{eqnarray*} |
151 |
\vecx' & = & \matM^{-1} \vecx \qquad \text{\textit{transform to image space}} \\ |
\vecx & = & \matM^{-1} \vecp \qquad \text{\textit{transform to image space}} \\ |
152 |
\vecn & = & \FLOOR{\vecx'} \qquad \text{\textit{integer part of position}} \\ |
\vecn & = & \FLOOR{\vecx} \qquad \text{\textit{integer part of position}} \\ |
153 |
\vecf & = & \vecx' - \vecn \qquad \text{\textit{fractional part of position}} \\ |
\vecf & = & \vecx - \vecn \qquad \text{\textit{fractional part of position}} \\ |
154 |
F\mkw{@}\vecx & = & \sum_{i=1-s}^s {\sum_{j=1-s}^s {\sum_{k=1-s}^s {V(\vecn+\VEC{i,j,k}) h(\vecf_x - i) h(\vecf_y - j) h(\vecf_z - k)}}} |
F\mkw{@}\vecp & = & \sum_{i=1-s}^s {\sum_{j=1-s}^s {\sum_{k=1-s}^s {V(\vecn+\VEC{i,j,k}) h(\vecf_x - i) h(\vecf_y - j) h(\vecf_z - k)}}} |
155 |
\end{eqnarray*}% |
\end{eqnarray*}% |
156 |
|
|
157 |
\begin{figure}[t] |
\begin{figure}[t] |
177 |
\caption{Computing $F\mkw{@}\vecx$ for a 3D scalar field in C} |
\caption{Computing $F\mkw{@}\vecx$ for a 3D scalar field in C} |
178 |
\end{figure} |
\end{figure} |
179 |
|
|
180 |
|
\section{Probing a 3D derivative field} |
181 |
|
We next consider the case of probing the derivative of a scalar field $F = V\circledast{}h$, where $s$ is the support |
182 |
|
of $h$. |
183 |
|
The probe $(\mkw{D}\;F)\mkw{@}\vecp$ produces a vector result as follows: |
184 |
|
\begin{eqnarray*} |
185 |
|
\vecx & = & \matM^{-1} \vecp \qquad \text{\textit{transform to image space}} \\ |
186 |
|
\vecn & = & \FLOOR{\vecx} \qquad \text{\textit{integer part of position}} \\ |
187 |
|
\vecf & = & \vecx - \vecn \qquad \text{\textit{fractional part of position}} \\ |
188 |
|
(\mkw{D}\;F)\mkw{@}\vecp & = & \left[\begin{array}{c} |
189 |
|
\sum_{i=1-s}^s {\sum_{j=1-s}^s {\sum_{k=1-s}^s {V(\vecn+\VEC{i,j,k}) h'(\vecf_x - i) h(\vecf_y - j) h(\vecf_z - k)}}} \\ |
190 |
|
\sum_{i=1-s}^s {\sum_{j=1-s}^s {\sum_{k=1-s}^s {V(\vecn+\VEC{i,j,k}) h(\vecf_x - i) h'(\vecf_y - j) h(\vecf_z - k)}}} \\ |
191 |
|
\sum_{i=1-s}^s {\sum_{j=1-s}^s {\sum_{k=1-s}^s {V(\vecn+\VEC{i,j,k}) h(\vecf_x - i) h(\vecf_y - j) h'(\vecf_z - k)}}} \\ |
192 |
|
\end{array}\right] |
193 |
|
\end{eqnarray*}% |
194 |
|
|
195 |
\end{document} |
\end{document} |